首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   43篇
  2023年   7篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
1.
人乳寡糖 (Human milk oligosaccharides,HMO) 是母乳中重要的免疫活性成分,对婴幼儿健康起到显著促进作用。2’-岩藻糖基乳糖 (2’-FL) 是HMO的主要组分,极具应用价值,3-岩藻糖基乳糖 (3-FL) 与2’-FL的合成途径相似,两者的研究具有相互借鉴意义,近年来针对它们的研究取得了较多进展。以微生物细胞工厂为核心理念的新型生物合成途径有望将2’-FL和3-FL产业化,未来将对乳制品行业产生重要的影响。文中综述了生物技术制备2’-FL和3-FL的最新研究进展,并对未来发展趋势进行了展望。  相似文献   
2.
纳米金属材料具有纳米晶强化效应、光吸收率大、较高的表面能和单磁畴性能等优点,因其在医药、化学催化、抗菌抑毒等方面发挥着越来越重要的作用而受到人们广泛关注。近年来,随着全球石化资源消耗与日俱增,环境污染加剧,基于可再生资源的生物基分子介导纳米材料的制备研究方兴未艾。生物基分子是指直接或间接来源于生物质的小分子或大分子物质,它们多数具有生物相容性好、低毒、可降解、来源广泛、价格低廉等优点。且由于生物基分子多数具有独特的理化性质,如具有生理活性的旋光性、酸碱两性、亲水亲油性以及易与金属离子络合等,其介导合成的纳米材料还兼具其独特功能性,比如消炎、抗癌、抗氧化、抗病毒以及降血糖血脂等,进一步拓宽了纳米金属材料的应用领域。文中对近年来基于生物基分子介导纳米金属材料的制备及应用进行全面综述,为开展相关研究提供参考。  相似文献   
3.
随着全球塑料循环体系的变革升级,提高塑料的回收利用不仅可以减少塑料在生命周期中的碳排放,还可以解决废塑料潜在的生态环境危害。文中介绍了2019年国家自然科学基金组织间国际 (地区) 合作研究项目“废塑料资源高效生物降解转化的关键科学问题与技术 (MIXed plastics biodegradation and UPcycling using microbial communities,MIX-UP)”。该项目聚焦“塑料污染”这一全球化的问题,围绕中欧双方确定的“塑料生物降解菌群”研究领域,联合中欧双方14家优势科研单位,开展实质性的重大前沿合作研究。针对废塑料生物降解中存在的解聚与重塑两个难题,项目以难降解石油基塑料 (PP、PE、PUR、PET和PS) 以及生物可降解塑料 (PLA和PHA) 的混合废塑料作为研究对象,从塑料微生物降解途径解析及关键元件的挖掘与改造、塑料高效降解混菌/多酶体系的构建与功能调控、塑料降解物的高值化炼制途径设计与利用策略3个方面展开研究。本项目将突破废塑料生物降解转化中高效降解元件挖掘、塑料降解物高值化利用的关键科学问题与技术,探索一条废塑料资源化、高值化、循环化、低碳化的新塑料循环路线,建立以“降塑再造”为核心理念的废塑料生物炼制体系,丰富我国固废资源化生物技术利用平台。项目的实施不仅有助于提升我国塑料 (生物) 循环经济的理论基础和关键技术水平,还可以推动我国与国际科研院所的多边交流与合作,促进我国在生物技术领域的创新发展,助力我国碳中和目标的实现。  相似文献   
4.
朱本伟  倪芳  熊强  姚忠  孙芸 《生物工程学报》2021,37(7):2571-2580
生物反应工程作为一门理论性与应用性都很强的专业课程,在生物工程等相关专业的课程设置中处于桥梁和纽带地位,对新型应用型工科人才的培养发挥着重要的作用。但由于该课程中公式等抽象理论知识过多,导致学生学习效率十分低下。因此,为了适应新工科教育背景下对创新型人才培养的需求,提高学生的学习兴趣和积极性,并培养学生的自主学习等创新能力,教学团队在课程教学中通过引入虚拟仿真技术、开展微课教学、采用案例式教学模式、利用科研平台等多元化方式,对该课程的教学模式、方法和手段尝试改革和探索,取得了一定的教学效果,并就此进行了一些探讨,以期能为相关课程的教学改革提供一些思路和启示。  相似文献   
5.
发酵工程是理工科高校生物工程学科领域的核心课程之一,是一门应用性、实践性极强的专业课程。该课程传统的实践模式已无法满足当前高校对大学生工程素质教育的需求。随着信息技术、自控技术的飞速发展,多层次、跨学科的“互联网+”教学已成为现今高等教育人才培养的新模式。本文中的发酵工程实操与虚拟仿真中试实验室平台以工程学为技术手段,通过“互联网+”将虚拟现实(virtual reality,VR)技术、信息自动化控制技术、数据库与发酵过程控制有机地结合在一起,构建一个“虚实”结合的“多维”工程中试实验室平台,并以此作为抓手开展食品发酵技能训练课程工程素质教育教学的创新与探索。初步建设成果与前期教学效果表明,该实验室平台的建设对发酵工程及相关专业学生的实践动手能力有明显的提高,为后期建设积累了宝贵的经验及大量有价值的工程实训数据。  相似文献   
6.
大肠杆菌BA002是敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸-甲酸裂解酶的编码基因 (pflB) 的工程菌。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。pncB是烟酸转磷酸核糖激酶 (NAPRTase) 的编码基因,通过过量表达pncB基因能够提高NAD(H)总量与维持合适的NADH/NAD+,从而恢复了厌氧条件下重组菌E. coli BA014 (BA002/pTrc99a-pncB) 的生长和产丁二酸的性能。然而,BA014在厌氧发酵过程中有大量丙酮酸积累,为进一步提高菌株的丁二酸生产能力,减少副产物丙酮酸的生成,共表达NAPRTase和来自于乳酸乳球菌 NZ9000中丙酮酸羧化酶 (PYC) 的编码基因pyc,构建了重组菌E. coli BA016 (BA002/pTrc99a-pncB-pyc)。3 L发酵罐结果表明,BA016发酵112 h后,共消耗了35.00 g/L的葡萄糖。发酵结束时,菌体OD600为4.64,产生了25.09 g/L丁二酸。通过共表达pncB和pyc基因,使BA016的丙酮酸积累进一步降低,丁二酸产量进一步提高。  相似文献   
7.
【目的】分离并鉴定精噁唑禾草灵高效降解菌株,为开发高效降解菌剂,强化精噁唑禾草灵原位修复,保证黄瓜产品安全提供菌株资源和理论依据。【方法】利用富集培养的方法分离降解菌株,并通过形态学、生理生化特征和16S rRNA基因进化分析进行鉴定;HPLC/MS鉴定菌株降解精噁唑禾草灵的中间产物,采用鸟枪法建库克隆降解过程中关键的水解酶基因,并进行异源表达,利用Michaelis-Menten双倒数曲线图测定酶动力学参数;通过正交试验确定菌株液态发酵参数,并通过对黄瓜灌根接种的方式,研究降解菌株对黄瓜根际土壤中精噁唑禾草灵的降解以及甘露醇对降解效率的强化作用。【结果】Rhodococcus sp. DSB-1在24 h内能将100 mg/L精噁唑禾草灵完全转化为精噁唑禾草灵酸,降解最适温度和pH分别为30℃和8.0。克隆得到一个精噁唑禾草灵水解酶基因,命名为pepE。水解酶PepE对精噁唑禾草灵的K_m为28.2μmol/L,k_(cat)/K_m为11.0 L/(μmol·s)。在发酵温度30℃、通气量1:0.4、搅拌速度200 r/min、培养时间48 h条件下,液态发酵所得菌剂对精噁唑禾草灵的降解效率最高。投加至黄瓜根际的菌株DSB-1可以在黄瓜根系定殖,12d内完全降解黄瓜根际环境中10mg/kg的精噁唑禾草灵。此外还发现添加甘露醇可强化菌株的修复能力,降解效率相对于未添加的处理提高14.8%。【结论】菌株DSB-1具有原位修复精噁唑禾草灵污染土壤的潜力。  相似文献   
8.
欧阳平凯 《生物工程学报》2022,38(11):3991-4000
工业生物技术是指以微生物或酶为催化剂进行物质转化,大规模地生产人类所需的化学品、医药、燃料、材料、食品等产品的生物技术。发展工业生物技术是人类由化石经济向生物经济过渡的关键路径,是解决人类目前面临的资源、能源及环境问题的重要手段。中国科学院天津工业生物技术研究所是我国工业生物技术和生物制造领域的主力代表。本文结合该研究所成立十年来的发展,简要回顾了我国工业生物技术发展战略规划布局、重要技术突破进展和行业影响,并对我国工业生物技术和生物制造的未来发展进行了展望分析。  相似文献   
9.
四吡咯化合物是存在于生物体中一类具有重要功能的化合物,已经广泛应用于农业、食品和医药等领域.由于化学合成法的烦琐流程和高昂成本以及动植物提取法存在品质不均一等缺点,大幅度限制了其工业化生产与相关应用.近年来,合成生物学的快速发展为微生物利用可再生生物质资源高效合成四吡咯化合物提供了新的技术手段.针对四吡咯化合物生物合成...  相似文献   
10.
重组蛋白在大肠杆菌中表达时,往往面临着形成包涵体的问题,而重组蛋白若是分泌至周质空间则基本解决了这一问题,周质空间的周质蛋白不仅能帮助重组蛋白正确折叠还有利于二硫键的生成。信号肽是一段由15-30个氨基酸组成,被融合在重组蛋白N端的短肽,按照结构、功能的不同可以划分为N区、H区和C区,具有引导重组蛋白转运至细胞周质空间的作用。本文综述了信号肽的结构组成、作用机理和基本分泌途径,讨论了信号肽的高效转运和筛选方法,总结了在大肠杆菌中重组蛋白融合信号肽实现周质表达的新进展,并对未来高效信号肽选择方面的研究进行了探讨。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号