首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   44篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2019年   9篇
  2018年   5篇
  2017年   9篇
  2016年   5篇
  2015年   21篇
  2014年   19篇
  2013年   44篇
  2012年   33篇
  2011年   39篇
  2010年   21篇
  2009年   18篇
  2008年   34篇
  2007年   28篇
  2006年   32篇
  2005年   26篇
  2004年   28篇
  2003年   34篇
  2002年   22篇
  2001年   11篇
  2000年   21篇
  1999年   19篇
  1998年   11篇
  1997年   3篇
  1996年   10篇
  1995年   11篇
  1994年   9篇
  1993年   4篇
  1992年   11篇
  1991年   13篇
  1990年   13篇
  1989年   16篇
  1988年   10篇
  1987年   4篇
  1986年   4篇
  1985年   10篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有664条查询结果,搜索用时 634 毫秒
51.
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe?Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.  相似文献   
52.
It has been hypothesized that oxidative stress plays a key role in aging. In order to elucidate the role of the antioxidant network — including α-tocopherol (αT) and αT transfer protein — in aging in vivo, α-tocopherol transfer protein knockout (αTTP?/?) mice were fed a vitamin-E-depleted diet, and wild-type (WT) mice were fed a diet containing 0.002 wt.% αT from the age of 3 months to 1 1/2 years. The lipid oxidation markers total hydroxyoctadecadienoic acid (tHODE) and 8-iso-prostaglandin F2α, and antioxidant levels in the blood, liver and brain were measured at 3, 6, 12 and 18 months. tHODE levels in the plasma of αTTP?/? mice were elevated at 6 months compared to 3 months, and were significantly higher those in WT mice, although they decreased thereafter. On the other hand, tHODE levels in the liver and brain were constantly higher in αTTP?/? mice than in WT mice. Motor activities decreased with aging in both mouse types; however, those in the αTTP?/? mice were lower than those in the WT mice. It is intriguing to note that motor activities were significantly correlated with the stereoisomer ratio (Z,E/E,E) of HODE, which is a measure of antioxidant capacity in vivo, in the plasma, in the liver and even in the brain, but not with other factors such as antioxidant levels.In summary, using the biomarker tHODE and its stereoisomer ratio, we demonstrated that αT depletion was associated with a decrease in motor function, and that this may be primarily attributable to a decrease in the total antioxidant capacity in vivo.  相似文献   
53.
There are many techniques for evaluating melanosome transfer to keratinocytes but the spectrophotometric quantification of melanosomes incorporated by keratinocyte phagocytosis has not been previously reported. Here we describe a new method that allows the spectrophotometric visualization of melanosome uptake by normal human keratinocytes in culture. Fontana-Masson staining of keratinocytes incubated with isolated melanosomes showed the accumulation of incorporated melanosomes in the perinuclear areas of keratinocytes within 48 h. Electron microscopic observations of melanosomes ingested by keratinocytes revealed that many phagosomes containing clusters of melanosomes or their fragments were localized in the perinuclear area. A known inhibitor of keratinocyte phagocytosis which inhibits protease-activated receptor-2, i.e., soybean trypsin inhibitor, decreased melanosome uptake by keratinocytes in a dose-dependent manner. These data suggest that our method is a useful model to quantitate keratinocyte phagocytosis of melanosomes visually in vitro.  相似文献   
54.
The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.  相似文献   
55.
The nuclear export and cytoplasmic degradation of the cyclin-dependent kinase inhibitor p27 are required for effective progression of the cell cycle through the G(0)-G(1) transition. The mechanism responsible for this translocation of p27 has remained unclear, however. We now show that cyclin D2 directly links growth signaling with the nuclear export of p27 at the G(0)-G(1) transition in some cell types. The up-regulation of cyclin D2 in response to mitogenic stimulation was found to occur earlier than that of other D-type cyclins and in parallel with down-regulation of p27 at the G(0)-G(1) transition. RNA interference-mediated depletion of cyclin D2 inhibited the nuclear export of p27 and delayed its degradation at the G(0)-G(1) transition. In contrast, overexpression of cyclin D2 in G(0) phase shifted the localization of p27 from the nucleus to the cytoplasm and reduced the stability of p27. Overexpression of the cyclin D2(T280A) mutant, whose export from the nucleus is impaired, prevented the translocation and degradation of p27. These results indicate that cyclin D2 translocates p27 from the nucleus into the cytoplasm for its KPC-dependent degradation at the G(0)-G(1) transition.  相似文献   
56.
Respiratory cytology continues to play a central role in the diagnosis and staging of thoracic malignancy, although over time indications have changed. Historically, sputum cytology and endobronchial brushings and washings figured prominently, but with the advent of endobronchial and endoscopic ultrasound much greater emphasis is placed on fine needle aspirates from lymph nodes. The advent of targeted sequencing panels for genomic profiling to identify driver mutations and PD-L1 directed immunotherapy means that there is a need to extract increasing amounts of diagnostic and predictive information from ever smaller amounts of diagnostic material. Recent work has demonstrated that cytology samples are well suited to delivering the information required, but in order to understand the limitations of clinical and laboratory techniques, a close working relationship between pathologist and thoracic oncologist is needed to optimise sample procurement and utilisation.  相似文献   
57.
The measurement of plasma insulin is important for clinical diagnosis of diabetes and for preclinical research of metabolic diseases, especially in rodent models used in drug discovery research for type 2 diabetes. Fasting immunoreactive insulin (F-IRI) concentrations are used to calculate the homeostasis model assessment ratio (HOMA-R), an index of insulin sensitivity. However, even the most sensitive commercially available enzyme-linked immunosorbent assay (ELISA) kits cannot measure the very low F-IRI concentrations in normal rats and mice. Therefore, we sought to develop a new rodent insulin ELISA with greater sensitivity for low F-IRI concentrations. Despite repeated efforts, high-affinity antibodies could not be generated by immunizing mice with mouse insulin (self-antigen). Therefore, we generated two weak monoclonal antibodies (13G4 and 26B2) that were affinity maturated and used to develop a highly sensitive ELISA. The measurement range of the sandwich ELISA with the affinity maturated antibodies (13G4m1 and 26B2m1) was 1.5 to 30,000 pg/ml, and its detection limit was at least 10 times lower than those of commercially available kits. In conclusion, we describe the development of a new ultrasensitive ELISA suitable for measuring very low plasma insulin concentrations in rodents. This ELISA might be very useful in drug discovery research in diabetes.  相似文献   
58.
Selenocysteine (Sec) insertion sequence-binding protein 2 (SBP2) is essential for the biosynthesis of Sec-containing proteins, termed selenoproteins. Subjects with mutations in the SBP2 gene have decreased levels of several selenoproteins, resulting in a complex phenotype. Selenoproteins play a significant role in antioxidative defense, and deficiencies in these proteins can lead to increased oxidative stress. However, lipid peroxidation and the effects of antioxidants in subjects with SBP2 gene mutations have not been studied. In the present study, we evaluated the lipid peroxidation products in the blood of a subject (the proband) with mutations in the SBP2 gene. We found that the proband had higher levels of free radical-mediated lipid peroxidation products, such as 7β-hydroxycholesterol, than the control subjects. Treatment of the proband with vitamin E (α-tocopherol acetate, 100 mg/day), a lipid-soluble antioxidant, for 2 years reduced lipid peroxidation product levels to those of control subjects. Withdrawal of vitamin E treatment for 7 months resulted in an increase in lipid peroxidation products. Collectively, these results clearly indicate that free radical-mediated oxidative stress is increased in the subject with SBP2 gene mutations and that vitamin E treatment effectively inhibits the generation of lipid peroxidation products.  相似文献   
59.
The calcium-sensing receptor antagonist (CaSR) has been recognized as a promising target of anabolic agents for treating osteoporosis. In the course of developing a new drug candidate for osteoporosis, we found tetrahydropyrazolopyrimidine derivative 1 to be an orally active CaSR antagonist that stimulated transient PTH secretion in rats. However, compound 1 showed poor physical and chemical stability. In order to work out this compound's chemical stability and further understand its in vivo efficacy, we focused on modifying the 2-position of the tetrahydropyrazolopyrimidine. As a result of chemical modification, we discovered (5R)-N-[1-ethyl-1-(4-ethylphenyl)propyl]-2,7,7-trimethyl-5-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide monotosylate 10m (TAK-075), which showed improved solubility, chemical stability, and in vivo efficacy. Furthermore, we describe that evaluating the active metabolite is important during repeated treatment with short-acting CaSR antagonists.  相似文献   
60.
In multiple sclerosis, a common inflammatory disease of the central nervous system, immune-mediated axon damage is responsible for permanent neurological deficits. How axon damage is initiated is not known. Here we use in vivo imaging to identify a previously undescribed variant of axon damage in a mouse model of multiple sclerosis. This process, termed 'focal axonal degeneration' (FAD), is characterized by sequential stages, beginning with focal swellings and progressing to axon fragmentation. Notably, most swollen axons persist unchanged for several days, and some recover spontaneously. Early stages of FAD can be observed in axons with intact myelin sheaths. Thus, contrary to the classical view, demyelination-a hallmark of multiple sclerosis-is not a prerequisite for axon damage. Instead, focal intra-axonal mitochondrial pathology is the earliest ultrastructural sign of damage, and it precedes changes in axon morphology. Molecular imaging and pharmacological experiments show that macrophage-derived reactive oxygen and nitrogen species (ROS and RNS) can trigger mitochondrial pathology and initiate FAD. Indeed, neutralization of ROS and RNS rescues axons that have already entered the degenerative process. Finally, axonal changes consistent with FAD can be detected in acute human multiple sclerosis lesions. In summary, our data suggest that inflammatory axon damage might be spontaneously reversible and thus a potential target for therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号