首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Previous studies showed low selenium (Se) concentrations in Belgian children. Serum α-tocopherol, retinol, total cholesterol, high-density lipoprotein and low-density lipoprotein cholesterol, selenium (Se), and thiobarbituric acid-reactive substances were examined. In order to obtain further information on the Se status in Belgian children, Se, α-tocopherol, retinol, and lipid concentrations were examined and signs of peroxidative lipid damage were evaluated in a subgroup. The study was performed in 524 children (0–14 yr old) during vaccination campaigns. Three age groups were analyzed: 0–1, 1–4, and 4–14 yr. In 87 of them, where sufficient amounts of serum were available, analysis of thiobarbituric acid-reactive substances was done. Infants have high serum α-tocopherol concentrations: (23.2 μmol/L [median and interquartile range: 18.6–30.2]) and low Se concentrations (0.37 mol/L [0.27–0.47]). Se concentrations rise significantly during the first 4 yr (p < 0.0001) (Mann-Whitney U-test, tied p-values): 0.70 μmol/L (0.59–0.82); in the 4–14 yr olds, it was 0.75 μmol/L (0.67–0.86). These values remain low compared to results coming from other parts of the world. α-Tocopherol concentrations decrease significantly after infancy (p < 0.0001). The ratio α-tocopherol/total cholesterol is higher in infants. This is induced by the high vitamin E content of infant formulas. Signs of serum lipid peroxidation could not be detected by analysis of serum malondialdehyde concentrations. High α-tocopherol concentrations, as those observed in infant serum lipids, could be one of the protective mechanisms from the peroxidative lipid damages, sometimes observed in a low-Se status.  相似文献   

3.
Quenching of singlet molecular oxygen (1ΔgO2) by α-tocopherol (I) involves the hydroxy function of the chromanol ring of I. In phosphatidylcholine (PC) uni- and multilamellar vesicles this structural element of I is localized at the interface polar headgroup/hydrophobic core. A dielectric constant of ? ~ 25 was determined for this special region of the PC bilayer. The ratio kQ/kR of rate constants of quenching processes (kQ) and irreversible reactions (kR) of I with 1ΔgO2 increases with decreasing polarity of the solvent. In ethanolic solutions where ? = 25.5, kQ/kR is about 40. Extrapolation of these results to phospholipid bilayers suggests that at the nearness of the ester carbonyl oxygen of the PC fatty acid moieties, α-tocopherol can deactivate approximately 40 1ΔgO2 molecules before being destroyed. It is concluded that in vivo, one may expect to find a higher kQ/kR ratio if the chromanol ring of I hides within the more hydrophobic interiors of the membrane surface peptides.  相似文献   

4.
Summary A study of the molar ratio dependence of the incorporation of -tocopherol into single-lamellar vesicles showed that the number of molecules which the bilayers can accommodate increased linearly with increasing -tocopherol/phosphatidylcholine initial molar ratios till about 0.05, then approached a saturation limit. At 5 mol%, one -tocopherol molecule per 60 phospholipids can be incorporated into the membranes. Up to this limit the distribution of -tocopherol in the bilayers is uniform, while at initial molar ratios higher than 0.05 a disproportionation toward the inner monolayer of the vesicles is observed. The average outer/total ratio is found to be 0.27±0.03 at -tocopherol/phosphatidylcholine molar ratios above 0.07 and is similar to asymmetrical distributions that have been reported in vesicles containing other one-chain amphiphiles (e.g., cholesterol). This large disproportionation is in contrast with the packing distribution of certain twochain amphiphiles, and indicates that one of the driving forces for asymmetry formation in lipid bilayers might be dependent on the number of hydrocarbon chains per amphiphile molecule. A possible reason for the disproportionation effect observed in our experiments is the displacement of unsaturated phospholipids to the outer monolayer of the single-lamellar vesicles, by the more rigid isoprene units of -tocopherol.  相似文献   

5.
We have found that plastoquinone-A (PQ-A) and α-tocopherol (α-Toc) increased the reduction level of the high-potential form of cytochrome b-559 (cyt. b-559 HP) and α-tocopherol quinone (α-TQ) decreased the level of this cytochrome form in Scenedesmus obliquus wild-type, while the investigated prenyllipids were not active in the restoration of the cyt. b-559 HP form in Scenedesmus PS28 mutant and Synechococcus 6301 (Anacystis nidulans) where the cyt. b-559 HP form is naturally not present. Among the tested prenyllipids, α-TQ quenched fluorescence in thylakoids of S. obliquus wild-type, the PS28 mutant and tobacco to the highest extent, while PQ-A was less effective in this respect. α-Tocopherol showed the opposite effect to α-TQ and it was rather small. The fluorescence quenching measurements of thylakoids in the presence of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) showed that the α-Toc and FCCP (carbonylcyanide-p-trifluoromethoxy-phenyl-hydrazone) did not quench non-photochemically chlorophyll fluorescence while PQ-9 and α-TQ were effective fluorescence quenchers at higher concentrations (> 15 μM). However, at the lower α-TQ concentrations where its effective fluorescence quenching was found in DCMU-free samples, there was nearly no quenching effect by α-TQ observed in DCMU-treated thylakoids. This suggested a specific, not non-photochemical, DCMU sensitive, fluorescence quenching of photosystem II (PSII) at low α-TQ concentrations which is probably connected with the cyclic electron transport around PSII and might have a function of excess light energy dissipation. The effects of α-TQ on PSII resembled those of FCCP under many respects which might suggest similar mechanism of action of these compounds on PSII, i.e. the catalytic deprotonation and/or redox changes of some components of PSII such as the water splitting system, tyrosine D, Chlz or cytochrome b-559.  相似文献   

6.
Solubilization and interaction of α-tocopherol into bis(2-ethylhexyl)sulphosuc cinate sodium salt microemulsion systems have been studied by temperature dependent phase transition, viscosity and nuclear magnetic resonance studies. Tocopherol being an amphiphilic molecule dissolves into the interfacial surfactant monolayer of the microemul sion droplets. The dissolution leads to an enhancement of the rigidity of the surfactant monolayer as studied by the increase in mixing and phase transition temperatures of the microemulsion droplets. Solubilization of tocopherol into microemulsion droplets causes an increase in the effective size of the droplet and as a consequence, the inter-droplet interactions are also increased. The water binding capacity of the surfactant (bis(2-ethylhexyl)sulphosuccinate sodium salt) is reduced due to solubilization of tocopherol as is evidenced from the downfield shifts of water proton magnetic resonances. In the presence of the dissolved electrolytes into the aqueous core, tocopherol is squeezed out of the microemulsion droplets increasing the membrane fluidity and permeability.  相似文献   

7.
A cDNA encoding γ-tocopherol methyltransferase from Brassica napus (BnTMT) was overexpressed in soybean [Glycine max (L.) Merr.] under the control of seed-specific promoter of Arabidopsis fatty acid elongase 1 (FAE1) or soybean glycinin G1. Two and three transgenic plants were selected, respectively, after Agrobacterium-mediated transformation. Polymerase chain reaction (PCR) and Southern blots confirmed that BnTMT was single-copy integrated into the genome of transgenic plants. RT-PCR analysis showed that the expression of BnTMT was higher in the immature cotyledons than in the mature cotyledons, while no expression was detected in the leaves. Moreover, the expression level under the control of FAE1 was higher than that of G1. HPLC analysis indicated that the seed-specific expression of BnTMT resulted in 11.1-fold and 18.9-fold increase in α- and β-tocopherol content, respectively, in T2 seed. These results suggested that introducing BnTMT into soybean can be used to increase the vitamin E composition in seeds.  相似文献   

8.
In this study, we investigated the α-tocopherol plasma concentrations in healthy free-ranging nestlings of the white-tailed sea eagle (Haliaeetus albicilla) (n = 32), osprey (Pandion haliaetus) (n = 39), northern goshawk (Accipiter gentilis) (n = 25), common buzzard (Buteo buteo) (n = 31), and honey buzzard (Pernis apivorus) (n = 18) as well as of free-ranging adults of the white-tailed sea eagle (n = 10), osprey (n = 31), and northern goshawk (n = 45). α-Tocopherol plasma concentrations were determined by reverse-phase high-performance liquid chromatography. α-Tocopherol plasma concentrations in nestlings of osprey, white-tailed sea eagle, and northern goshawk did not differ significantly amongst the species, but the common buzzard and honey buzzard nestlings had significantly lower α-tocopherol plasma concentrations than nestlings of the other species (both P < 0.001). Adult male ospreys and white-tailed sea eagles had significantly higher α-tocopherol concentrations compared to adult females (both P < 0.005). Adult ospreys and northern goshawks had significantly higher α-tocopherol plasma concentrations compared to their nestlings (both P < 0.001). In adult female northern goshawks, plasma concentrations of α-tocopherol increased significantly before egg laying (P < 0.001). These results demonstrate α-tocopherol plasma concentrations in birds of prey to be species specific and influenced by age and reproductive status.  相似文献   

9.
10.
The natural vitamin E analog α-tocopheryl phosphate (αTP) modulates atherosclerotic and inflammatory events more efficiently than the unphosphorylated α-tocopherol (αT). To investigate the molecular mechanisms involved, we have measured plasma levels of αTP and compared the cellular effects of αT and αTP in THP-1 monocytes. THP-1 cell proliferation is slightly increased by αT, whereas it is inhibited by αTP. CD36 surface expression is inhibited by αTP within hours without requiring transport of αTP into cells, suggesting that αTP may bind to CD36 and/or trigger its internalization. As assessed by gene expression microarrays, more genes are regulated by αTP than by αT. Among a set of confirmed genes, the expression of vascular endothelial growth factor is induced by αTP as a result of activating protein kinase B (PKB/Akt) and is associated with increased levels of reactive oxygen species (ROS). Increased Akt(Ser473) phosphorylation and induction of ROS by αTP occur in a wortmannin-sensitive manner, indicating the involvement of phosphatidylinositol kinases. The induction of Akt(Ser473) phosphorylation and ROS production by αTP can be attenuated by αT. It is concluded that αTP and αT influence cell proliferation, ROS production, and Akt(Ser473) phosphorylation in an antagonistic manner, most probably by modulating phosphatidylinositol kinases.  相似文献   

11.
Although α-tocopherol (α-TOC) is the most biologically active form of vitamin E and is found at high levels in plasma, γ-tocopherol (γ-TOC) has also been found to be a powerful antioxidant in vitro and constitutes up to 70% of the dietary intake of TOC. Low plasma levels of γ-TOC and a high α-TOC:γ-TOC ratio may be associated with coronary heart disease, suggesting that there may be a positive protective role for the γ-form of TOC. In this study the ability of different forms of vitamin E to protect against sister chromatid exchanges (SCE) induced by either hydrogen peroxide or menadione was investigated. Chinese hamster V79 cells were pre-treated with 10 μM TOC for 24 h, and then challenged with a genotoxin. After a 24 h pre-treatment, there was a greater incorporation of γ-TOC (319.8 ± 66.2 ng/106 cells) into V79 cells compared to α-TOC (66.9 ± 6.4 ng/106 cells). γ-TOC did not protect the cells against SCE induced by either hydrogen peroxide or menadione, α-TOC acetate was partially protective against both genotoxins, whereas α-TOC completely abolished the oxidant induced SCE. These results demonstrate that, despite a greater incorporation of γ-TOC into V79 cells, α-TOC but not γ-TOC was more effective at inhibiting oxidatively-induced SCE in V79 cells.  相似文献   

12.
Vitamin E (α-tocopherol) is an essential fat-soluble nutrient with antioxidant properties. α-Tocopherol transfer protein (α-TTP), the product of the gene responsible for familial isolated vitamin E deficiency, plays an important role in maintaining the plasma α-tocopherol level by mediating the secretion of α-tocopherol by the liver. However, the mechanisms underlying hepatic α-tocopherol secretion are not fully understood. This study was undertaken to elucidate the mechanism of α-tocopherol re-efflux from hepatocytes, the cells that have the most important role in regulating plasma-α-tocopherol concentrations. From in vitro experiments using [3H]α-tocopheryl acetate and McARH7777 cells that stably express α-tocopherol transfer protein (α-TTP), the following results were obtained. First, addition of apolipoprotein A-I (apoA-I), a direct acceptor of the ATP-binding cassette transporter A1 (ABCA1)-secreted lipids, increased α-tocopherol secretion in a dose-dependent manner. Second, probucol, an antiatherogenic compound reported to be an inactivator of ABCA1 reduced hepatic α-tocopherol secretion. Third, ABCA1-RNAi suppressed hepatic α-tocopherol secretion. In a mouse in vivo experiment, addition of 1% probucol to the diet decreased plasma α-tocopherol concentrations. These results strongly suggest that ABCA1 is substantially involved in hepatic α-tocopherol secretion.  相似文献   

13.
Liposomes have been used for the delivery of antioxidants to different tissues and organs for the treatment of oxidative stress-induced injuries. In this study, the acute toxicity of a single dose of intravenously (i.v.) administered liposomal antioxidant formulation, containing N-acetylcysteine (NAC) with or without α-tocopherol (α-T) or γ-tocopherol (γ-T), in rats was examined. Each group consisted of 5 male and 5 female Sprague-Dawley rats, with a control group receiving empty dipalmitoylphosphatidylcholine (DPPC) liposomes (660 mg/kg) and test groups receiving DPPC liposomes (660 mg/kg) entrapped with 1) NAC (200 mg/kg), 2) NAC (200 mg/kg) and α-T (83.3 mg/kg), and 3) NAC (200 mg/kg) and γ-T (71.4 mg/kg). These dose levels were determined from the dose-range-finding study and were considered to be the maximum feasible dose (MFD) levels, based on the volume of 10 mL/kg and physical properties and viscosity of the test articles that could be safely administered to rats by an i.v. injection. Two weeks after treatment (day 15), rats in the control group and three test groups exhibited no clinical signs of toxicity during the dosing period or during the 14-day post-treatment period. Weight gain and food consumption in all animals was appropriate for the age and sex of animals. Clinical pathology findings (e.g., hematology, coagulation, clinical chemistry, and urinalysis) were unremarkable in all rats and in all groups. In conclusion, the results of this study showed no treatment-related toxicity in rats at the MFD level by a single bolus i.v. administration.  相似文献   

14.
An enzyme system which metabolizes α-tocopherol has been identified in homogenates of etiolated pea shoots. Enzyme activity is considerably increased by the presence of 20% ethanol in the incubation mixture. The enzyme has an absolute requirement for phospholipid. The reaction utilizes molecular oxygen and it is proposed that the enzyme be called α-tocopherol oxidase.  相似文献   

15.
Tocopherols are members of the vitamin E complex and essential antioxidant compounds synthesized in chloroplasts that protect photosynthetic membranes against oxidative damage triggered by most environmental stresses. Tocopherol deficiency has been shown to affect germination, retard growth and change responses to abiotic stress, suggesting that tocopherols may be involved in a number of diverse physiological processes in plants. Instead of seeking constitutive synthesis of tocopherols to improve stress tolerance, we followed an inducible approach of enhancing α-tocopherol accumulation under dehydration conditions in tobacco. Two uncharacterized stress inducible promoters isolated from Arabidopsis and the VTE2.1 gene from Solanum chilense were used in this work. VTE2.1 encodes the enzyme homogentisate phytyltransferase (HPT), which catalyzes the prenylation step in tocopherol biosynthesis. Transgenic tobacco plants expressing ScVTE2.1 under the control of stress-inducible promoters showed increased levels of α-tocopherol when exposed to drought conditions. The accumulation of α-tocopherol correlated with higher water content and increased photosynthetic performance and less oxidative stress damage as evidenced by reduced lipid peroxidation and delayed leaf senescence. Our results indicate that stress-induced expression of VTE2.1 can be used to increase the vitamin E content and to diminish detrimental effects of environmental stress in plants. The stress-inducible promoters introduced in this work may prove valuable to future biotechnological approaches in improving abiotic stress resistance in plants.  相似文献   

16.
1. Specific lipoproteins binding alpha-tocopherol but not its known metabolites have been isolated and identified from cytosol of rat intestinal mucosa and from serum. 2. A timestudy of the appearance of the orally administered alpha-[(3)H]tocopherol with these lipoproteins indicates that very-low-density lipoprotein of serum acts as a carrier of the vitamin. 3. The involvement of the mucosal lipoprotein in the absorption of the vitamin from the intestine has been inferred from observations on the amounts of alpha-tocopherol in serum of orotic acid-fed rats where release of lipoproteins from the liver to serum is completely inhibited. A considerable decrease in the association of alpha-tocopherol with serum very-low-density lipoprotein under this condition is interpreted to mean that serum lipoproteins are limiting factors for the transport of the vitamin across the intestine and that this is possibly effected by exchange of alpha-tocopherol between serum very-low-density lipoprotein and mucosal lipoprotein.  相似文献   

17.
In this study, the interactions of α-tocopherol (α-TOH) in PVOH–starch blends were investigated. α-TOH is an interacting agent possesses a unique molecule of polar chroman “head” and non-polar phytyl “tail” which can improve surface interaction of PVOH and starch. It showed favorable results when blending PVOH–starch with α-TOH, where the highest tensile strengths were achieved at 60 wt.% PVOH–starch blend for 1 phr α-TOH and 50 wt.% for 3 phr α-TOH, respectively. This due to the formation of miscible PVOH–starch as resulted by the compatibilizing effect of α-TOH. Moreover, the enthalpy of melting (ΔHm) of 60 wt.% PVOH–starch and 50 wt.% PVOH–starch added with 1 and 3 phr α-TOH respectively were higher than ΔHm of the neat PVOH–starch blends. The thermogravimetry analysis also showed that α-TOH can be used as thermal stabilizer to reduce weight losses at elevated temperature. The surface morphologies of the compatible blends formed large portion of continuous phase where the starch granules interacted well with α-TOH by acting as compatilizer to reduce surface energy of starch for embedment into PVOH matrix.  相似文献   

18.
19.
20.
Effects of Schisandrin B (Sch B) and -tocopherol (-TOC) on ferric chloride (Fe3+) induced oxidation of erythrocyte membrane lipids in vitro and carbon tetrachloride (CCl4) induced lipid peroxidation in vivo were examined. While -TOC could produce prooxidant and antioxidant effect on Fe3+-induced lipid peroxidation, Sch B only inhibited the peroxidation reaction. Pretreatment with -TOC (3 mmol/kg/day × 3) did not protect against CCl4-induced lipid peroxidation and hepatocellular damage in mice, whereas Sch B pretreatment (0.3 mmol/3.0 mmol/kg/day × 3) produced a dose-dependent protective effect on the CCl4-induced hepatotoxicity. The ensemble of results suggests that the ability of Sch B to inhibit lipid peroxidation, while in the absence of pro-oxidant activity, may at least in part contribute to its hepatoprotective action.Abbreviations ALT alanine aminotransferase - CCl4 carbon tetrachloride - Fe3+ ferric chloride - MDA malondialdehyde - Sch B Schisandrin B - TBA 2-thiobarbituric acid - TBARS thiobarbituric acid reactive substances - -TOC dl--tocopherol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号