首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
黄病毒是一大科人类致病性的单股正链RNA病毒。黄病毒包括登革病毒、西尼罗脑炎病毒及日本脑炎病毒等成员,主要径通过节肢动物的叮咬进行传播,即为虫媒黄病毒。研究发现,在虫媒黄病毒复制过程中,除病毒基因组正链RNA、互补的负链RNA及两者的杂合RNA分子外,在病毒感染细胞后还能产生一种病毒亚基因组RNA(subgenomic RNA,sgRNA)。近年对这种sgRNA展开了比较多的研究,结果表明,其产生机制与已知的其他病毒sgRNA产生机制并不相同。该sgRNA的产生与虫媒黄病毒基因组3’非编码区所形成的保守二级结构有关,同时宿主核酸酶对其的不完全降解亦有重要作用。虫媒黄病毒基因组3’非编码区中带有多个与病毒复制相关的RNA元件,而sgRNA的发现有助于全面地认识病毒RNA与宿主RNA代谢途径间的相互作用,为最终阐明病毒的致病机制奠定基础。  相似文献   

2.
病毒入侵宿主细胞时,宿主细胞启动抑制病毒复制的免疫机制。同样,病毒也会利用多种手段去逃避先天免疫感应机制的监测以及宿主细胞对外来者的降解,同时还会操纵宿主细胞为自身的增殖提供便利。DEAD-box解旋酶家族是一类存在于宿主细胞中的功能蛋白,它们在转录、剪接、mRNA的合成和翻译等多种细胞过程中起着关键作用。该家族成员拥有识别RNA的能力以及参与多个细胞过程,所以它们可以以多种方式影响病毒感染宿主细胞后引起的天然免疫应答。本文就近年来有关于DEAD-box RNA解旋酶在天然免疫方面的研究进行综述,以期为相关研究提供材料支撑。  相似文献   

3.
microRNA是一类新近发现的由20-23个核苷酸构成的非编码RNA分子,它在生命进程中起着重要作用.病毒的复制和繁殖依赖于宿主细胞,而且对细胞环境的变化敏感.研究表明宿主和病毒都可以编码microRNA,病毒可通过小RNA介导的干扰作用影响宿主细胞,也能利用自身的"独特战略"改变宿主细胞从而满足自己生存的需求,所以,宿主与病毒间存在microRNA-mRNA相互作用的机制.尽管时microRNA与病毒感染的关系研究时间不长,但目前的研究结果为我们理解病毒和宿主之间的相互作用提供了一条途径,并为寻找病毒感染的生物标志物和治疗方法提供了新的思路.  相似文献   

4.
病毒microRNA研究进展   总被引:1,自引:0,他引:1  
microRNA(miRNA)是一类存在于多细胞生物中长约21-24nt的非编码RNA分子,它们与靶mRNA分子互补结合抑制蛋白翻译或导致mRNA降解,从而调控靶基因表达。miRNA已被证实在多种代谢途径中发挥重要作用,调节包括细胞分化和分裂、细胞凋亡及癌症发生在内的多个细胞过程。利用生物信息学以及分子克隆的方法在线虫、哺乳动物以及植物中已发现超过4000条miRNA。最近在病毒中也发现有miRNA基因存在,通过对病毒miRNA靶基因的预测,推测其在病毒复制过程中发挥重要的调控作用。目前病毒编码的miRNA分子的特点、转录机制、功能、进化保守性以及病毒与宿主miRNA的关系都已有一定的了解。对于病毒相关miRNA研究的深入,必将对认识病毒-宿主相互作用以及相关疾病的治疗带来新的启示。  相似文献   

5.
microRNAs(miRNAs)是一种长度为22nt的非编码RNA分子,能够结合mRNA,影响翻译效率,调控蛋白的表达。近来多项研究表明,动物宿主miRNAs通过多种机制抑制病毒的复制,如直接靶向病毒基因、干扰病毒复制所需因子、调节先天性免疫、调节细胞凋亡、调节细胞免疫,发挥抗病毒效应。本文归纳总结宿主miRNAs对病毒复制的调控机制,讨论miRNAs类抗病毒药物的应用情况,并展望该类药物的发展趋势。  相似文献   

6.
核酶与AIDS治疗   总被引:3,自引:0,他引:3  
 艾滋病(AIDS)是由人免疫缺陷病毒(HIV)感染并破坏人体免疫功能所导致的一种综合症. 作为具有核酸内切酶活性的RNA小分子,核酶能特异性结合及切割HIV病毒靶分子,并促进靶分子mRNA的裂解,且能相继与多个靶分子RNA作用,同时又不影响宿主细胞RNA. 利用核酶治疗艾滋病不仅没有化疗药物常见的副作用,而且由于核酶本身具有RNA剪切酶活性,可同时剪切HIV mRNA和HIV生命过程中重要的调节蛋白mRNA.因此,较其它基因疗法如RNAi、DNA decoy等,更能有效地抑制HIV复制,并且对由HIV变异而导致的耐药病毒株同样有效,同时对病毒突变的诱导作用也较其它抗病毒药物低.因此,在抗AIDS基因治疗研究中具有潜在的应用价值. 本文在对核酶的结构、催化作用机制及其对HIV-1的作用机制进行概述的基础上,重点讨论了近年来核酶作用于HIV的研究进展以及对AIDS治疗的应用前景.  相似文献   

7.
屈允月  钟照华  佟雷 《病毒学报》2019,35(6):972-977
微小RNA(microRNA,miRNA/miR)是一类长度约为18~22个核苷酸的小非编码单链RNA,能够参与机体发育、细胞增殖、分化和肿瘤发生等一系列生物过程。病毒与宿主细胞一样,也可以编码miRNA,并在病毒感染过程中发挥重要的作用。本文从病毒编码miRNA的发现,经典与非经典的生物合成途径,以及病毒编码miRNA对宿主细胞和病毒自身作用机制等方面进行概述,以期为研究病毒来源的miRNA的生物学功能提供一定参考。  相似文献   

8.
ZAP是一种抗病毒因子,能够特异性结合病毒RNA并招募细胞中的RNA酶降解所结合的靶RNA,从而抑制某些病毒的复制,如鼠白血病病毒(MLV)、辛德比斯病毒(SIN).ZAP对HIV病毒抑制作用并不明显.Tat和Rev是HIV编码的两种可以特异性结合HIVRNA的蛋白质,将它们与ZAP构建成融合蛋白,使得融合蛋白通过Tat或Rev结合HIVRNA并通过ZAP降解HIVRNA,从而抑制HIV假病毒载体携带基因的表达.这一结果为抑制HIV病毒提供了一个新思路,也支持了ZAP招募mRNA降解机器降解靶RNA的模型.  相似文献   

9.
金冬雁 《生命的化学》2007,27(2):105-108
抗病毒作用是RNA干扰(RNAi)在植物及低等动物中的一个重要功能。一方面,宿主细胞编码并表达短干扰RNA(siRNA),对入侵细胞的病毒产生抑制作用;另一方面,病毒编码并表达特定的RNA或蛋白质,以对抗宿主细胞的RNAi。在部分脊椎动物病毒中已经发现多种由病毒编码的微RNA(miRNA),它们对病毒及细胞基因的表达有重要的调节作用。同时,某些细胞miRNA也可影响脊椎动物病毒的复制。然而,RNAi在脊椎动物细胞中是否具有广谱抗病毒活性、脊椎动物病毒又是否普遍编码miRNA及普遍具备拮抗RNAi的机制?目前尚无定论,有待于进一步的研究加以阐明。  相似文献   

10.
宿主-病毒在miRNA水平上的相互作用   总被引:1,自引:0,他引:1  
微RNA(microRNA,miRNA)是近来发现的重要基因调节子,在许多生物学过程包括抗病毒防御中发挥着重要作用.越来越多的证据表明一些病毒或者编码它们自己的miRNAs或者颠覆细胞miRNAs.由此,宿主和病毒编码miRNAs及其靶标形成了宿主和病毒间新一调节层面的相互作用.深入理解宿主-病毒间miRNAs介导的相互作用,不仅有利于阐明病毒致病的分子基础,而且有利于制定更好的治疗策略.  相似文献   

11.
The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.  相似文献   

12.
13.
In addition to genomic RNA, HIV-1 particles package cellular and spliced viral RNAs. In order to determine the encapsidation mechanisms of these RNAs, we determined the packaging efficiencies and specificities of genomic RNA, singly and fully spliced HIV mRNAs and different host RNAs species: 7SL RNA, U6 snRNA and GAPDH mRNA using RT-QPCR. Except GAPDH mRNA, all RNAs are selectively encapsidated. Singly spliced RNAs, harboring the Rev-responsible element, and fully spliced viral RNAs, which do not contain this motif, are enriched in virions to similar levels, even though they are exported from the nucleus by different routes. Deletions of key motifs (SL1 and/or SL3) of the packaging signal of genomic RNA indicate that HIV and host RNAs are encapsidated through independent mechanisms, while genomic and spliced viral RNA compete for the same trans-acting factor due to the presence of the 5′ common exon containing the TAR, poly(A) and U5-PBS hairpins. Surprisingly, the RNA dimerization initiation site (DIS/SL1) appears to be the main packaging determinant of genomic RNA, but is not involved in packaging of spliced viral RNAs, suggesting a functional interaction with intronic sequences. Active and selective packaging of host and spliced viral RNAs provide new potential functions to these RNAs in the early stages of the virus life cycle.  相似文献   

14.
Messenger RNA degradation is a fundamental cellular process that plays a critical role in regulating gene expression by controlling both the quality and the abundance of mRNAs in cells. Naturally, viruses must successfully interface with the robust cellular RNA degradation machinery to achieve an optimal balance between viral and cellular gene expression and establish a productive infection in the host. In the past several years, studies have discovered many elegant strategies that viruses have evolved to circumvent the cellular RNA degradation machinery, ranging from disarming the RNA decay pathways and co-opting the factors governing cellular mRNA stability to promoting host mRNA degradation that facilitates selective viral gene expression and alters the dynamics of host–pathogen interaction. This review summarizes the current knowledge of the multifaceted interaction between viruses and cellular mRNA degradation machinery to provide an insight into the regulatory mechanisms that influence gene expression in viral infections. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

15.
Moloney murine leukemia virus (MLV) particles contain both viral genomic RNA and an assortment of host cell RNAs. Packaging of virus-encoded RNA is selective, with virions virtually devoid of spliced env mRNA and highly enriched for unspliced genome. Except for primer tRNA, it is unclear whether packaged host RNAs are randomly sampled from the cell or specifically encapsidated. To address possible biases in host RNA sampling, the relative abundances of several host RNAs in MLV particles and in producer cells were compared. Using 7SL RNA as a standard, some cellular RNAs, such as those of the Ro RNP, were found to be enriched in MLV particles in that their ratios relative to 7SL differed little, if at all, from their ratios in cells. Some RNAs were underrepresented, with ratios relative to 7SL several orders of magnitude lower in virions than in cells, while others displayed intermediate values. At least some enriched RNAs were encapsidated by genome-defective nucleocapsid mutants. Virion RNAs were not a random sample of the cytosol as a whole, since some cytoplasmic RNAs like tRNA(Met) were vastly underrepresented, while U6 spliceosomal RNA, which functions in the nucleus, was enriched. Real-time PCR demonstrated that env mRNA, although several orders of magnitude less abundant than unspliced viral RNA, was slightly enriched relative to actin mRNA in virions. These data demonstrate that certain host RNAs are nearly as enriched in virions as genomic RNA and suggest that Psi- mRNAs and some other host RNAs may be specifically excluded from assembly sites.  相似文献   

16.
Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential.  相似文献   

17.
M G Katze  M B Agy 《Enzyme》1990,44(1-4):332-346
The following reviews the role of mRNA stability in the regulation of both viral and cellular gene expression in virus-infected cells. Indeed, several eukaryotic viruses, including the human immunodeficiency virus, HIV-1, regulate cellular protein synthesis via such control mechanisms. The following systems will be discussed: (i) the degradation of viral and cellular mRNAs in cells infected by herpes simplex virus (HSV) and advances made using the HSV virion host shutoff mutant; (ii) the degradation of viral and cellular mRNA and ribosomal RNA in cells infected by vaccinia virus and the possible role of the oligoadenylate synthetase-RNase L pathways; (iii) the turnover of RNAs in cells infected by encephalomyocarditis virus, reovirus, and La Crosse virus; and finally (iv) recent studies from our laboratory on the degradation of cellular mRNAs in cells infected by HIV-1.  相似文献   

18.
During infection, positive-strand RNA viruses subvert cellular machinery involved in RNA metabolism to translate viral proteins and replicate viral genomes to avoid or disable the host defense mechanisms. Cytoplasmic RNA granules modulate the stabilities of cellular and viral RNAs. Understanding how hepatitis C virus and other flaviviruses interact with the host machinery required for protein synthesis, localization, and degradation of mRNAs is important for elucidating how these processes occur in both virus-infected and uninfected cells.  相似文献   

19.
20.
RNA silencing plays an important role in development through the action of micro (mi) RNAs that fine tune the expression of a large portion of the genome. But, in plants and insects, it is also a very important player in innate immune responses, especially in antiviral defense. It is now well established that the RNA silencing machinery targets plant as well as insect viruses. While the genetic basis underlying this defense mechanism in these organisms starts being elucidated, much less is known about the possible antiviral role of RNA silencing in mammals. In order to identify siRNAs coming from viruses in infected human cells, small RNAs from cells infected with RNA viruses, such as hepatitis C virus, yellow fever virus or HIV-1, were cloned and sequenced, but no virus-specific siRNAs could be detected. On the contrary, viral small RNAs were found in cells infected by the DNA virus Epstein-Barr. A closer look at these revealed that they were not siRNAs, but rather resembled miRNAs. This finding indicated that, rather than being targeted by RNA silencing, human DNA viruses seem to have evolved their own miRNAs to modulate the expression of host genes. This primary observation has been extended to other members of the herpesvirus family as well as other DNA viruses such as the polyomavirus SV40. Viral miRNAs have the potential to act both in cis to regulate expression of viral genes, or in trans on host genes. There are good indications for the cis mode of action, but the identification of cellular targets of these small viral regulators is only in its infancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号