首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
植物次生代谢基因工程研究进展   总被引:18,自引:0,他引:18  
随着对植物代谢网络日渐全面的认识,应用基因工程技术对植物次生代谢途径进行遗传改良已取得了可喜的进展.对次生代谢途径进行基因修饰的策略包括:导入单个、多个靶基因或一个完整的代谢途径,使宿主植物合成新的目标物质;通过反义RNA和RNA干涉等技术降低靶基因的表达水平,从而抑制竞争性代谢途径,改变代谢流和增加目标物质的含量;对控制多个生物合成基因的转录因子进行修饰,更有效地调控植物次生代谢以提高特定化合物的积累.作者结合对大豆种子异黄酮类代谢调控和基因工程改良的研究,着重介绍了花青素和黄酮类物质、生物碱、萜类化合物和安息香酸衍生物等次生代谢产物生物合成的基因工程研究进展.  相似文献   

2.
对长春花吲哚生物碱合成途径的基因工程研究进行了综述。研究人员为探索利用长春花大量生产抗肿瘤药物长春碱和长春新碱等,对长春花吲哚生物碱的合成途径展开了深入的研究,克隆和鉴定了多个编码合成途径关键酶的基因,并研究了相关转录因子对该合成途径基因表达的调控作用;另外,一些关键基因和转录因子已被用于长春花吲哚生物碱代谢途径的遗传改造,相关研究显示利用基因工程手段提高长春花药用成分含量的可行性。  相似文献   

3.
植物芪类化合物,是一类具有抗菌植保作用的次生代谢产物,因具有抑菌、抗氧化、抗肿瘤等多种生物活性而越来越受到重视。本文对植物芪类生物合成途径中涉及到的相关酶、基因和代谢调控机制的研究现状和应用系统生物学研究芪类生物合成途径的相关酶、基因的方法进行综述,并讨论了芪类生物合成相关酶、基因研究的重要意义和应用,以期为调节芪类产量、满足药用保健需求及植物防御、作物品质改良提供帮助。  相似文献   

4.
海藻糖酶法合成途径及其酶基因的重组表达研究   总被引:1,自引:0,他引:1  
在生物抗逆研究中,海藻糖合酶基因是继甘露醇、脯氨酸、甜菜碱合成酶基因之后又一个与抗逆相关的基因。海藻糖具有独特的生物学功能,能提高生物体对干旱、高温、冷冻和渗透压的抗性,发现以来就受到人们的普遍关注。随着对海藻糖化学性质、生理功能、作用机理及代谢途径等方面研究的深入,其在生物制品、食品、医药、作物育种及精细化工等领域广阔的应用前景日益显现。就海藻糖在生物体中的合成途径,以及海藻糖合成酶的基因工程研究进展进行了综述。  相似文献   

5.
植物谷氨酰胺合成酶研究进展及其应用前景   总被引:2,自引:0,他引:2  
氮素是制约作物产量的主要营养元素之一,谷氨酰胺合成酶(Glutamine synthase,GS;EC 6.3.1.2)是氮素代谢途径中的关键酶。目前,拟南芥、水稻、小麦和玉米等植物中的GS成员均已被分离鉴定。研究表明,超表达GS能够提高植物对氮素的利用效率,从而在植株的生长发育特别是产量形成过程中发挥重要作用,但是其功能在不同植物上并不完全一致,可能与GS基因受到转录和翻译后等水平的调控有关。以下综述了植物GS基因分类、QTL定位、对氮素代谢响应、组织表达特异性、生物学功能及其分子调控机制等方面的研究进展,并展望了植物GS基因的应用前景,以期为利用GS基因来提高植物氮素利用效率提供具有参考价值的信息。  相似文献   

6.
油桐是我国重要的木本油料植物, 过去对油桐的研究主要集中于栽培和常规育种, 与油桐种仁油脂合成相关的分子机理研究还未见报道。文章采用RNA-seq技术对油桐种子油脂合成的3个不同时期的转录组进行比较, 获得了大量差异表达的Unigene序列。在此基础上, 通过GO分类和Pathway富集性分析将这些差异表达Unigene归类于128个代谢途径, 其中包含与油脂合成相关的脂肪酸生物合成和甘油磷脂代谢途径。桐酸经脂肪酸生物合成途径合成后通过甘油磷脂代谢途径以桐油的形式贮存。将这两个代谢途径的Unigene序列在KEGG数据库中进行比对, 获得了一些关键酶的同源蛋白质。文章通过对编码这些同源蛋白质的基因在油桐种子油脂合成期的表达模式进行分析, 以期为油桐油脂合成, 尤其是桐酸合成机理的解析提供理论参考, 并为油桐的遗传改良提供潜在的基因资源, 从而提高油桐的单位面积产量。  相似文献   

7.
萜类生物合成的基因操作   总被引:7,自引:0,他引:7  
萜类是一组结构迥异的化合物家族,其中很多具有较大的应用价值,如青蒿素和紫杉醇等,它们在多种微生物和植物中合成,但其天然产量低。萜类代谢工程通过DNA重组技术改造萜类合成细胞中的代谢途径,以提高萜类最终产量或在不含萜类的生物中合成萜类,为促进有用萜类合成提供了新的机会。以萜类化合物生物合成途径的基因转移与表达为切入点,综述了目前在微生物及植物中应用代谢工程提高萜类产量的研究进展。  相似文献   

8.
甘油是生物柴油的副产物,因其价格低廉和高还原性,成为生物发酵的重要碳源。为了进一步提高工程菌对甘油的利用能力,从而提高萜类化合物的合成能力,本研究从β-胡萝卜素高产菌CAR015出发,对其甘油代谢途径的多个基因进行了调控。首先敲除了编码3-磷酸甘油抑制子的glp R基因,然后分别用M1-37、M1-46和M1-93三个不同强度的人工调控元件对glp FK、glp D和tpi A三组基因进行单基因调控和多基因组合调控。研究发现用M1-46调控glp D基因后β-胡萝卜素产量达到了64.82 mg/L,是CAR015的4.86倍,甘油消耗速率也提高了100%;调控tpi A基因后β-胡萝卜素产量略有提高;调控glp FK基因后β-胡萝卜素产量略有降低。说明Glp D是甘油代谢途径中的关键限速步骤。Q-PCR结果表明,降低甘油代谢途径的glp D和glp FK基因转录水平,增加tpi A基因转录水平,可以增加细胞生长速度、提高β-胡萝卜素产量,可能是因为减少了丙酮醛毒性所致。组合调控glp D和tpi A基因,获得β-胡萝卜素产量最高菌株Gly003,其β-胡萝卜素产量达72.45 mg/L、产率达18.65 mg/g每克干细胞,分别是出发菌株CAR015的5.23倍和1.99倍。总之,Glp D是甘油代谢途径中的关键限速步骤,适当强度调控glp D,可以有效提高重组大肠杆菌的β-胡萝卜素产量。  相似文献   

9.
植物类胡萝卜素生物合成及功能   总被引:4,自引:0,他引:4  
详述了植物类胡萝卜素生物合成途径,并从突破类胡萝卜素合成途径中上游瓶颈限制、类胡萝卜素代谢各分支途径的改造、提高植物细胞对类胡萝卜素物质积累能力三个方面探讨了类胡萝卜素生物合成酶基因在植物基因工程中的研究现状,最后对植物类胡萝卜素代谢的研究前景进行了展望。  相似文献   

10.
酿酒酵母(Saccharomyces cerevisiae)作为最简单的真核模式生物被广泛应用于生命科学的各项研究中。目前,大多数天然产物的主要生产途径是从原材料中直接提取,该方法效率较低,同时消耗了大量的生物资源,已逐渐被新兴的合成生物学方法所取代。其中通过改造酿酒酵母自身的代谢途径并加入异源代谢途径生产目标天然产物已成为一种高效的资源获取途径。通过对外源基因启动子的优化及改造,调控外源基因在宿主中的表达水平,从而协调宿主自身代谢途径,定向合成目的代谢产物是酵母合成生物学和代谢工程的研究热点。从构建酿酒酵母合成天然产物过程中启动子结构、类型及优化表达的方法进行了综述,为相关研究者利用酿酒酵母作为底盘细胞进行合成生物学的研究提供参考。  相似文献   

11.
For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.  相似文献   

12.
魏绍巍  黎茵 《生物工程学报》2011,27(12):1702-1710
植物磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvate carboxylase,PEPC,EC 4.1.1.31)是广泛存在的一种细胞质酶,催化磷酸烯醇式丙酮酸(PEP)和HCO3-生成草酰乙酸(OAA),后者可转化生成三羧酸循环的多种中间产物.PEPC在植物细胞中参与植物的光合碳同化等重要代谢途径,并且在不同组织中具有多种生理功能.PEPC同时也参与调控植物种子的营养物质合成与代谢过程,控制糖类物质流向脂肪酸合成或蛋白质合成途径.以下介绍了植物PEPC的种类、蛋白质结构特点及其在植物组织中的调控方式,并重点论述了PEPC在生物基因工程中的应用方面的进展,随着对其功能机制和应用研究的深入,将有助于植物PEPC在高产优质农作物育种、能源植物和工业微生物等的开发利用等方面得到更好的发展与应用.  相似文献   

13.
Improved understanding of crop production systems in relation to N-supply has come from a knowledge of basic plant biochemistry and physiology. Gene expression leads to protein synthesis and the formation of metabolic systems; the ensuing metabolism determines the capacity for growth, development and yield production. This constitutes the genetic potential. These processes set the requirements for the supply of resources. The interactions between carbon dioxide (CO(2)) and nitrate () assimilation and their dynamics are of key importance for crop production. In particular, an adequate supply of, its assimilation to amino acids (for which photosynthesized carbon compounds are required) and their availability for protein synthesis, are essential for metabolism. An adequate supply of stimulates leaf growth and photosynthesis, the former via cell growth and division, the latter by larger contents of components of the light reactions, and those of CO(2) assimilation and related processes. If the supply of resources exceeds the demand set by the genetic potential then production is maximal, but if it is less then potential is not reached; matching resources to potential is the aim of agriculture. However, the connection between metabolism and yield is poorly quantified. Biochemical characteristics and simulation models must be better used and combined to improve fertilizer-N application, efficiency of N-use, and yields. Increasing N-uptake at inadequate N-supply by increasing rooting volume and density is feasible, increasing affinity is less so. It would increase biomass and N/C ratio. With adequate N, at full genetic potential, more C-assimilation per unit N would increase biomass, but energy would be limiting at full canopy. Increasing C-assimilation per unit N would increase biomass but decrease N/C at both large and small N-supply. Increasing production of all biochemical components would increase biomass and demand for N, and maintain N/C ratio. Changing C- or N-assimilation requires modifications to many processes to effect improvements in the whole system; genetic engineering/molecular biological alterations to single steps in the central metabolism are unlikely to achieve this, because targets are unclear, and also because of the complex interactions between processes and environment. Achievement of the long-term objectives of improving crop N-use and yield with fewer inputs and less pollution, by agronomy, breeding or genetic engineering, requires a better understanding of the whole system, from genes via metabolism to yield.  相似文献   

14.
The development of new or improved traits in plants, whether that is through traditional genetic modification and selection or through transgenic technologies, is associated with the potential risk of unintended changes with harmful or unacceptable consequences. The greater definition and precision of transgenic modification and the regulatory oversight of such technology may, however, confer advantages in safety and efficacy. This bears considerable relevance to the use of transgenic-based metabolic engineering in agricultural trait development. Metabolic engineering seeks to modify the amounts or chemical structures within selected biosynthetic routes without introducing inadvertent effects on other metabolic pathways. Examples discussed here include attempts to; (i) modify benzylisoquinoline alkaloid biosynthesis in poppy, (ii) improve the nutritional value of maize by increasing levels of free lysine, and (iii) increase the nutritional value of cottonseed by eliminating gossypol production. Clearly, evaluation of the efficacy (and unintended consequences) of such approaches is vital. A role for metabolomics in the compositional and metabolite analyses of new plant varieties derived from transgenic-based metabolic engineering is discussed. Major themes discussed in this review include; (i) the heightened level of scrutiny associated with genetically modified (GM) crop evaluations has markedly contributed to the safety in the adoption of transgenic technology, and (ii) the nature of any introduced trait may prove more relevant to safety assessments than the means by which the trait is introduced.  相似文献   

15.
Stability of grain yield performance is an important characteristic in the selection of new crop cultivars. Information from cultivar trials, however, is seldom fully analysed for genotype by environment interactions and, therefore, information on stability of current crop cultivars is lacking. The objectives of this study were to investigate the stability of agronomic traits among genotypes of barley (Hordeum vulgare) across 17 environments (location‐years) in Maryland (USA) from 1994 through 1997 and to examine the effect of locations and years of testing on grain yield performance in this region. Significant differences were observed among barley cultivars and experimental lines for grain yield, plant height, and heading date. Grain yield was positively correlated with plant height and negatively correlated with heading date. Genotype x environment interactions measured through regression analysis were significant for grain yield, heading date and plant height, with the environmental component having the largest effect. Most barley genotypes tested (90%) had regression slopes for grain yield that did not differ from 1.0, indicating good potential for yield response under improving environmental conditions. The most widely grown cultivar in the mid‐Atlantic region, ‘Nomini’, had a regression slope that was higher than 1.0 for grain yield. This indicates that it tends to respond with increasingly higher yields under favorable conditions. In this study, the slope and the standard error of the slope were moderately correlated with grain yield. The genotype's coefficient of variation was not a good indicator of stability for this region. Grain yields of genotype entries common to all years and locations were correlated with corresponding yields at each of the locations and years to assess the relative performance of each location and year. Correlation coefficients across locations were relatively high (r=0.64) within each year of testing. Correlations between years for the same and across locations were generally much lower. The data presented here supports a testing program over more years rather than increased locations to fully characterise the performance of new cultivars.  相似文献   

16.
Fruits are one of the major sources of vitamins, essential nutrients, antioxidants and fibers in human diet. During the last two–three decades, genetic engineering methods based on the use of transgenes have been successfully adopted to improve fruit plants and focused mainly on enhanced tolerance to biotic and abiotic stresses, increased fruit yield, improved post harvest shelf life of fruit, reduced generation time and production of fruit with higher nutritional value. However, the development of transgenic fruit plants and their commercialization are hindered by many regulatory and social hurdles. Nowadays, new genetic engineering approaches i.e. cisgenesis or intragenesis receive increasing interest for genetic modification of plants. The absence of selectable marker gene in the final product and the introduced gene(s) derived from the same plant or plants sexually compatible with the target crop should increase consumer’s acceptance. In this article, we attempt to summarize the recent progress achieved on the genetic engineering in fruit plants and their applications in crop improvement. Challenges and opportunities for the deployment of genetic engineering in crop improvement programs of fruit plants are also discussed.  相似文献   

17.
Light is a potent regulator of plant growth and development, impacting gene expression to global physiology and metabolism. Plants sense a broad range of wavelengths, from UV to far-red, through separate photoreceptors. These light sensors direct adaptive responses under changing environmental conditions and specifically activate precise downstream signaling pathways. Research studies in photobiology, mostly in Arabidopsis thaliana, have characterized light effects on many plant behaviors, along with the genetic mechanisms that control them. Transferring this knowledge to crops has opened a new field in plant science where variation in light quantity, quality, duration or combinations can be used to change plant growth, development or metabolism to influence a desired final product. With the potential of easily being introduced into production chains, and given its safety and relative low cost, this approach can be combined with, or used as an alternative to, breeding or genetic engineering. We review how light has been used in 22 different crop species to manipulate growth characteristics, nutritional value, and yield. We also discuss future opportunities in using light to control produce quality or timing of plant product production.  相似文献   

18.
Despite a huge population increase since the 1960s, the green revolution more than doubled world grain production and averted large-scale famine. Food crop productivity will have to be further raised, however, because the world population is still increasing rapidly. Among several parameters associated with the increase in yield potential, genes that control plant height and tiller number (in cereal crops) have recently been identified. In addition, a promising strategy to generate semi-dwarf varieties has been developed. Recent advances in plant genome analyses and plant biotechnology will realize a second green revolution through the genetic engineering of food crops.  相似文献   

19.
20.
Plants produce a plethora of secondary metabolites which constitute a wealth of potential pharmaceuticals, pro-vitamins, flavours, fragrances, colorants and toxins as well as a source of natural pesticides. Many of these valuable compounds are only synthesized in exotic plant species or in concentrations too low to facilitate commercialization. In some cases their presence constitutes a health hazard and renders the crops unsuitable for consumption. Metabolic engineering is a powerful tool to alter and ameliorate the secondary metabolite composition of crop plants and gain new desired traits. The interplay of a multitude of biosynthetic pathways and the possibility of metabolic cross-talk combined with an incomplete understanding of the regulation of these pathways, explain why metabolic engineering of plant secondary metabolism is still in its infancy and subject to much trial and error. Cyanogenic glucosides are ancient defense compounds that release toxic HCN upon tissue disruption caused e.g. by chewing insects. The committed steps of the cyanogenic glucoside biosynthetic pathway are encoded by three genes. This unique genetic simplicity and the availability of the corresponding cDNAs have given cyanogenic glucosides pioneering status in metabolic engineering of plant secondary metabolism. In this review, lessons learned from metabolic engineering of cyanogenic glucosides in Arabidopsis thaliana (thale cress), Nicotiana tabacum cv Xanthi (tobacco), Manihot esculenta Crantz (cassava) and Lotus japonicus (bird’s foot trefoil) are presented. The importance of metabolic channelling of toxic intermediates as mediated by metabolon formation in avoiding unintended metabolic cross-talk and unwanted pleiotropic effects is emphasized. Likewise, the potential of metabolic engineering of plant secondary metabolism as a tool to elucidate, for example, the impact of secondary metabolites on plant–insect interactions is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号