首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate reduction in leaves of tomato occurred at the same ratein plants grown in 8.0 mol m–3 nitrate as in plants grownin 2.0 mol m–3 nitrate, but at a much slower rate in plantsgrown in 0.1 mol m–3 nitrate. However, the plants grownin 8.0 mol m–3 nitrate had a larger leaf system than theplants grown in 2.0 mol m–3 nitrate, and so the totalcapacity to assimilate nitrate was greater in the plants grownin the higher concentration. It was shown that plants grownin 8.0 mol m–3 nitrate were better buffered against nitratewithdrawal than plants grown in 2.0 mol m–3 nitrate asthe rate of nitrate reduction declined more slowly when plantswere transferred to 0.1 mol m–3 nitrate from the higherconcentration than from the lower concentration. Furthermore,leaf expansion continued in the plants transferred from thehigher concentration, whereas it ceased abruptly in the plantstransferred from the lower concentration. It was concluded thatboth continuing expansion and continuing nitrate reduction wereaccompanied, and possibly caused by, a release of nitrate fromstorage pools in the lower part of the stem or the roots. Duringwithdrawal of nitrate the leaves were shown to maintain potentialactivity of the enzyme nitrate reductase although there wasno nitrate to be reduced. When nitrate was resupplied it couldbe reduced very quickly and reduction in the leaves was seento increase within 5 h of resupply. By 3 d after resupply furtherenzyme activity had been induced. Key words: Lycopersicon esculentum Mill, nitrate assimilation, nitrate reductase activity, nitrate withdrawal  相似文献   

2.
Experiments were conducted to determine the influence of glyphosate[N-(phosphonomethyl)glycine] on extractable nitrate reductaseactivity during light and dark growth of soybean (Glycine max)seedlings. Glyphosate (5?10–4 M), applied via root-feedingto three-day-old etiolated seedling, significantly reduced enzymeactivity in roots (48 to 96 h) and leaves (96 h) of seedlingsplaced in the light, but had little effect on enzyme activityin cotyledons compared to enzyme levels in tissues of untreatedseedlings. During dark-growth, nitrate reductase activity increasedwith time in cotyledons of untreated seedlings (activity about85-fold less than in cotyledons of light-grown plants) but muchlower enzyme levels were found in cotyledons of glyphosate-treatedseedlings after 72 and 96 h. In leaves of dark-grown seedlings,glyphosate reduced nitrate reductase levels by 95%. Most inhibitionof extractable enzyme activity occurred in newly developingorgans (leaves and roots) which correlates well with reportsthat glyphosate is rapidly translocated to these sites. However,the fact that glyphosate inhibits growth prior to lowering enzymeactivity levels indicates a secondary effect on nitrate reductase. (Received May 18, 1984; Accepted February 12, 1985)  相似文献   

3.
Lawlor, D. W., Boyle, F. A., Kendall, A. C. and Keys, A. J.1987. Nitrate nutrition and temperature effects on wheat: Enzymecomposition, nitrate and total amino acid content of leaves.—J.exp. Bot. 38: 378–392. Wheat plants were grown in controlled environments in two temperatureregimes with two rates of nitrate fertilization. In some experimentstwo light intensities were combined with the nitrogen and temperaturetreatments. The composition of the third leaf was studied fromsoon after emergence until early senescence. The amounts ofchlorophyll, soluble protein, ribulose bisphosphate carboxylase-oxygenase(RuBPc-o) protein, nitrate, and total amino acids were measuredtogether with the activities of RuBPc-o, fructose- 1,6-bisphosphatase,glycolate oxidase, carbonic anhydrase, nitrate reductase, glutaminesynthetase and serine- and glutamate-glyoxylate aminotransferases.Additional nitrate supply increased the amounts, per unit leafarea, of chlorophyll, total soluble protein and RuBPc-o proteinand the activities of all the enzymes. The ratio of RuBP carboxylaseto RuBP oxygenase activity, when measured at constant CO2/O2ratio and temperature, was unaffected by growth conditions orleaf age. Leaves grown at the lower temperature, especiallywith more nitrate, contained much more soluble protein, nitratereductase, fructose bisphosphatase and free amino acids perunit area than the plants grown in the warmer conditions. However,young leaves grown in the warm contained more nitrate than thosegrown in the cool. Amounts of protein, amino acids and chlorophylland most enzyme activities reached maxima near full leaf expansionand decreased with age; additional nitrate slowed the decreaseand senescence was delayed. Nitrate content and nitrate reductaseactivities were highest in leaves before full expansion andthen fell rapidly after full expansion. Increased light intensityincreased the content of RuBPc-o protein at the higher rateof nitrate supply. Chloroplast components and, to a lesser extent,peroxisomal enzymes associated with photosynthetic nitrogenassimilation changed in proportion with different treatmentsbut nitrate reductase activity was not closely related to chloroplastenzymes. Control of tissue composition in relation to environmentalconditions is discussed. Key words: Nitrate nutrition, temperature, wheat, enzyme, amino acid, leaves, ribulose bisphosphate carboxylase oxygenase, nitrate reductase  相似文献   

4.
Determination of Nitrate Reductase Activity in Barley Leaves and Roots   总被引:4,自引:0,他引:4  
The inactivation of nitrate reductase in the leaves and rootsof barley (Hordeum vulgare L. cv. Mazurka) during and afterextracting was investigated. At 0 °C in the absence of casein,25 per cent of ‘total’. i.e. maximal in vitro, nitratereductase activity was lost during the 2 min extraction process,followed by a slower loss of activity while the extract wasstored in ice. Activity was maintained by adding a minimum of1 per cent casein to the extraction medium containing 0·1M phosphate (pH 7·5), 1 mM EDTA and 1 mM dithiothreitol.Nitrate reductase was stable for several hours in these extracts,but declined in a first order manner in the absence of dithiothreitol.Casein also prevented the initial loss while making root extracts,but had less effect during storage. Using casein and thiols, nitrate reductase activity in light,(as product of maximal in vitro rates and wt g–1) in leaveswas 98 per cent of the total activity in 31-day-old plants grownwith full nutrient in water culture and 60-day-old field-grownplants receiving no fertilizer. Field-grown plants, however,exhibited only 17 per cent of the activity of culture-grownplants. Nitrate reductase in leaves of barley plants grown in waterculture had a diurnal rhythm. During the first 3 h of the lightperiod, activity increased to 1·3 x the ‘dark’value. This was followed by a temporary decrease and then byanother increase to a maximum of 1·7 x the ‘dark’value, occurring about 8 h after illumination. Activity thendecreased during the rest of the light period and in darkness. Hordeum vulgare L., barley, nitrate reductase  相似文献   

5.
Nitrate reductase activity (in vivo method, substrate non-limiting)in unshaded leaves from the top of the canopy has been determinedfor field-grown potato plants over the course of the growingseason. The pattern of change was almost identical for plantsreceiving no added fertilizer and those receiving 24 g N m–2.Activity increased to a peak at about 90 days after plantingand declined thereafter. On a fresh weight basis activity wasalways higher in fertilized plants. Nitrate reductase activitywas positively and significantly correlated with leaf proteincontent in high N plants (r2 = 0.71; P = 0.05), but poorly correlatedwith both the nitrate content of the leaf lamina and the nitrateconcentration in petiole sap. Up until 90 days after planting(mid-July) there appeared to be a positive relationship betweenincreased activity of nitrate reductase and solar radiation.However, results obtained over two seasons showed that the declinein activity after this time was not consistently linked witha fall in the level of solar radiation. Remobilization of reduced-Nand stored nitrate from leaves and stems accompanied this declinein nitrate reductase activity and in the latter part of theseason appeared to account for all of the N gained by growingtubers. In unfertilized plants nitrate-N accounted for 5 per cent orless of total plant N. Fertilized plants contained up to 25per cent nitrate-N. While nitrate availability limited growthin unfertilized plants, sub-optimal rates of nitrate assimilationin fertilized plants, particularly during the early stages ofpost-emergence growth, may contribute to inefficient use ofacquired nitrate. The carbohydrate status of leaf lamina and petiole sap weremodified by N supply. The soluble sugar and starch contentsof low N leaves were higher than in their high N counterparts.By contrast, the concentration of soluble sugars in petiolesap increased to a higher value in high N samples. Althoughsap sugar levels declined in both treatments towards the endof the season, N application delayed this decline for severalweeks. Solanum tuberosum, nitrate reductase, nitrate assimilation, senescence  相似文献   

6.
7.
Disinfected seeds of soybean and actively growing cultures ofChlorella vulgaris were grown on nitrogen-free media. The nitratecontent of both the soybean seedlings and algal cultures substantiallyincreased during nitrogen starvation. The nitrate level in soybeanseedlings was at least eight times greater than seeds aftertwo to three weeks. Nitrogen starvation also caused an increasein the nitrate content of the algal cultures. Nitrate reductaseactivity also increased, and its appearance was sensitive tocycloheximide. Tungstate, added during starvation, inhibitedthe induction of nitrate reductase with a concomitant increasein the level of nitrate. These data suggest that oxidation ofreduced nitrogen compounds can occur in higher plants and algae. 1 A contribution of the Texas Agricultural Experiment Station (Received June 6, 1981; Accepted August 25, 1981)  相似文献   

8.
Variation in Nitrate Reductase Activity in Lolium   总被引:3,自引:0,他引:3  
Nitrate reductase activity was studied in the leaves and rootsof Lolium perenne. Growth temperatures of 8, 15, or 20 °Cdid not affect activity, but the same temperatures during assayhad differential effects on the nitroso couple used to measureenzyme activity. Activity increased with increasing light intensity,reaching a high plateau value at around 40 W m–2. Nitratecontent of leaves, also measured in this experiment, did notvary significantly with different light intensities. Increasingnitrate in the nutrient solution up to 0.5 mM N also increasedactivity. Adding ammonium chloride at similar levels to thenitrate caused no marked repression of activity. Removal ofnitrate from the nutrient solution decreased enzyme activitywithin 24 h. Marked diurnal fluctuations occurred in activity,apparently in response to light intensity, since the nitratelevel in the plant varied little. The enzyme activity of rootswas much less than that of leaves. In the parents and progeny from a half diallel cross, the parentalgenotypes differed significantly in activity, but the numberof families involved was too small for the regression of progenyon parents (b = 1.74) and the correlation coefficient (r = 0.44NS) to achieve significance. In this experiment a significantpositive regression was obtained between nitrate reductase activityand dry matter yield.  相似文献   

9.
The Occurrence of Nitrate Reduction in the Leaves of Woody Plants   总被引:13,自引:1,他引:12  
Nitrate reductase activities greater than 02 µmol h–1g–1 f. wt, measured by an in vivo assay, occurred in 41per cent of a large sample (555 species) of woody plants. Ifseveral taxonomic groups (Gymnosperms, Ericaceae and Proteaceae)with consistently low activities were discounted activitiesgreater than 02 µmol h–1 g–1 f. wt occurredin 73 per cent of the species. This compares with 93 per centin herbaceous species, suggesting that leaf nitrate reductionis of common occurrence in woody plants. In a small sample ofspecies leaf nitrate reductase activity correlated with nitrateconcentration in the xylem sap. Low activities occurred consistentlyin the Gymnosperms, Ericaceae and Proteaceae. Feeding cut shootsof representatives of these groups with nitrate caused inductionof leaf nitrate reductase activity in the Gymnosperms and Proteaceae,but only limited induction in the Ericaceae. The Ericaceae,with the exception of two species, had low activities and lownitrate reductase inducibility. Root assimilation may predominatein the Gymnosperms and Proteaceae. It is suggested that nitratereduction generally occurs in the leaves of trees from a varietyof plant communities and that this may be related to the lowerenergy cost of leaf, as opposed to root, nitrate assimilation. Nitrate reductase, trees and shrubs, leaves, nitrate assimilation, nitrate translocation, nitrate reductase induction, energy cost, plant ecology  相似文献   

10.
Stem from three- and four-week-old Soyabean [Glycine max (L.)Merr. cv. Tracy] plants reduced from 0.3 to 0.7 µmol nitrateh–l g–l f. wt. Leaf activity was 4.7–7.6 µmolnitrate h–l g–l f. wt. Outer stem was two to fourtimes more active at reducing nitrate than was inner stem. Plantnitrate nutrition had a strong effect upon the ratio of activitypresent in stem and leaf. More nitrate increased the proportionpresent in leaves. Glycine max L., soyabean, nitrate assimilation, nitrogen metabolism, Rhizobium japonicum  相似文献   

11.
The effects of high (15 mM) and low (0.75 mM) solution nitratelevels on nitrogen metabolism in three genotypes (IL 7A, IL13 and IL 21) of winged beans [Psophocarpus tetragonolobus (L.)DC.] and one genotype (Williams) of soya bean [Glycine max (L.)Merrill] were investigated. Plants were grown for 42 days ina greenhouse in solution culture prior to sampling. The 15 mM nitrate treatment resulted in greater growth of allplant parts except roots. Growth of soya beans was more responsiveto nitrate level than was growth of winged beans. The high nitratelevel inhibited nodulation in all plants. The IL 13 and IL 21winged bean genotypes had similar nitrogenase activity (acetylenereduction per plant) as the soya bean and IL 7A winged beangenotype had lower activity. However, the IL 13 winged beangenotype had higher nitrogenase activity (acetylene reductionper unit nodule mass) than the other three genotypes which allhad similar activity. The 15 mM solution nitrate level stimulatedleaf and root nitrate reductase (NR) activity for all plants.All winged bean genotypes had higher leaf NR activity and higherpercentage reduced- and nitrate-nitrogen contents of leavesand stems compared with soya beans. However, total protein (reducednitrogen) was greater in soya beans when sampled indicatingthat more nitrate had been metabolized by soya beans than bywinged beans during the 42-day growth period. Psophocarpus tetragonolobus (L.) DC., winged bean, Glycine max (L.) Merrill, Soya bean, nitrate reductase, nitrogen fixation, nitrogenase activity, nodulation  相似文献   

12.
Two experiments were conducted to evaluate the effects of phenotypicrecurrent selection for high and low post-anthesis leaf-laminain vivo NRA on nitrate uptake, nitrate partitioning and in vitroNRA of seedling roots and leaves. In Experiment 1, intact plantsof cycle 0, 4, and 6 of the high and low NRA strains were grownon NH4-N for 11 d, then exposed to 1.0 mol m–3 KNO3, andcultures sampled at 6 h and 28 h (induction and post-inductionperiods). Nitrate uptake, tissue nitrate concentration and invitro NRA were determined. The pattern of response to selectionin seedling leaf NRA was similar to that observed for in vivoNRA of field grown plants. Leaf NRA increased between 6 h and28 h. Root NRA was not affected by selection or sampling time.Treatments differed in total fresh weight but not in reductionor uptake of nitrate per unit weight, indicating a lack of correspondencebetween NRA and reduction and supporting the idea that concomitantreduction by NR is not obligatorily linked to nitrate influxin the intact plant. In Experiment 2, dark-grown plants of cycle 0, and 6 of thehigh and low NRA strains were cultured without N, detopped onday 6, transferred the following day to 0-75 mol m–3 KNO3and sampled at 6 h and 28 h. In contrast to Experiment 1, selectionpopulations differed in nitrate reduction and root NRA, whichby 28 h reached higher average levels than root NRA of intactplants. Translocation and reduction were inversely related amongstrains within each sampling time. The high level of translocationin detopped plants of the low NRA strain was difficult to reconcilewith its low leaf NRA level of Experiment 1. It is suggestedthat nitrate transport in detopped roots is altered relativeto the intact system in a way which permits greater NRA inductionand nitrate reduction. The results indicate that nitrate partitioningby detopped root systems should be interpreted with caution. Key words: Zea, nitrate reductase activity, nitrate uptake, nitrate reduction, nitrate partitioning, selection  相似文献   

13.
DALE  J. E. 《Annals of botany》1976,40(6):1177-1184
The in vivo method has been used to determine activity of nitratereductase in Hiproly and Proctor barley. Differences in activitybetween the cultivars were small and less than those due togrowing conditions. Activity in plants grown in culture solutionwas greater than that for sand-grown plants, especially in theroot The in vivo method gave values for nitrate reductase activitywhich are less than those found by the in vitro method, andevidence is presented to show that the in vivo method underestimatesthe rate of formation of organic nitrogen in barley seedlings.It is shown that significant nitrate reductase activity occursin roots but it is nevertheless concluded that the main siteof nitrate assimilation is in the leaves of this material.  相似文献   

14.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1083-1091
Treatment of potato plants grown in nutrient solution with 3.8µM ABA resulted in reduced soluble protein in roots andin leaves at 24 h, but not in stems. This treatment reducedin vivo nitrate reductase activity in all organs for about 48h with the most pronounced reduction occurring in the roots.Excised root and leaf segments from plants treated with ABAfor 24, 48 and 72 h absorbed significantly more 14C leucine,compared to the control but the percent incorporation into proteinwas not altered in roots. In response to ABA total free amino nitrogen in leaves was lowerat 5 and 72 h and in stems at 72 h. Amino nitrogen content ofroots was enhanced by ABA at 5, 24 and 72 h due to generallyhigher levels of aspartate, serine, glutamate, proline and ammonia.There was no consistent relationship between ABA suppressionof nitrate reductase activity and ammonia or specific aminoacid (except proline) levels in leaves and stems. The increasedfree amino nitrogen levels in response to the hormone may bethe result of impaired NO3– reduction rather than thecause. The results of protein synthesis studies and solubleprotein content suggest that ABA inhibition of nitrate reductaseis not due to general inhibition of protein synthesis and mayinvolve specific inhibition of nitrate reductase protein synthesis. 1 Contribution No. 684, Department of Plant Science, Universityof Manitoba.  相似文献   

15.
Experiments conducted to determine the effects of leupeptin,a specific inhibitor of thiol proteinase, on extractable nitratereductase (NR) activity in leaves of Hordeum distichum duringdarkness revealed that leupeptin (0.01 mg.ml–1) appliedto detached leaves significantly reduced the loss of NR activity.At the same time it also reduced the formation of small cytochromec reductase species, which is a degradation product of NR complex,Upon nitrate induction, extractable NR activity increased butthe content of thiol proteinase decreased. This inverse correlationwas also observed upon transfer of nitrate-grown barley seedlingsto nitrate-free nutrient solution. Furthermore, cycloheximide(0.1 mg.ml–1) treatment of barley seedlings reduced thecontent of thiol proteinase and retarded the loss of NR activityunder noninducing conditions. These results suggest that invivo changes in NR content in leaves of Hordeum distichum arethe result of proteolysis by an endogenous thiol proteinase. (Received May 16, 1985; Accepted July 22, 1985)  相似文献   

16.
The developmental profile of ‘constitutive’ nitratereductase activity (cNRA) in leaves of soybean (Glycine max(L.) cv. Bragg) plants at different ages is described. The youngestleaves had most cNRA and the activity dropped off as a newerleaf developed above it. Each leaf had its distinct active periodof in vivo cNRA. This pattern was different in urea-grown andsymbiotically-grown plants (inoculated with Bradyrhizobium japonicumstrain USDA 110), where the latter had no detectable in vivocNRA in older leaves. Urea-grown plants maintained considerablein vivo NRA in such older leaves. When symbiotically-grown plantshad their nodules removed, in vivo cNRA reappeared in olderleaves within 1 d of removal, nearly reaching levels of youngleaves at 3 d after nodule excision. Allantoic acid (ALL), oneof the known transport ureides of soybeans, was implicated asa possible signal molecule from nodules to leaves. Allantoicacid (100 µM) inhibited in vitro c1 NRA significantly,with 400 µM ALL resulting in complete inhibition. In contrast,allantoin (ALN) had no inhibitive effect on NRA. Inhibitionof c1NRA by ALL was by a competitive process, judging from Lineweaver-Burkeplots against nitrate. Kinetics showed a constant Vmax of around105 nmol NO2 mg–1 protein h–1 and a Km for nitrateof 15 mM, which increased to 60 mM in the presence of 200 µMallantoic acid. Non-specific (ionic and pH-related) influenceswere eliminated. Allantoic acid also had a slight stimulatingeffect of in vitro NRA (up about 25% at 400 µM). Thesefindings suggest that c1NRA may be involved in ureide metabolism,rather than in vivo nitrate metabolism. Key words: Root-shoot interaction, nitrogen metabolism, nodulation, symbiosis  相似文献   

17.
Nitrate reductase activity, assayed either in vivo or in vitro was considerably higher in bean (Phaseolus vulgaris L.) leaves from 7-day-old light grown seedlings than those from dark grown, both in the absence as well as presence of nitrate. Cytochrome c reductase activity was however similar in both regimes, while peroxidase was lower in light than in dark. The light stimulated increase in nitrate reductase activity in leaf segments from dark grown seedlings was inhibited by cycloheximide, DNP, chloramphenicol, and sodium tungstate and was unaffected by lincomycin and DCMU. Under similar conditions, the increase in total chlorophyll was inhibited completely by cycloheximide and DNP, partially by chloramphenicol and lincomycin, and was unaffected by tungstate and DCMU. A supply of 1~5 mm reduced glutathione increased enzyme activity in the dark and also to some extent in light. The substrate induction of enzyme activity started after a lag of one hr in light or dark and continued for either 5 hr in the dark or 8 hr in light. Two proteinaceous inhibitors (Factors I and II) of nitrate reductase were isolated by ammonium sulfate precipitation and Sephadex gel filtration. The amount of Factor I was higher in the dark than in light. The amount and activity of Factor II was however, almost equal in light and dark. The inhibition of enzyme activity by these inhibitors increased with their concentration. It is proposed that light increases nitrate reductase activity by decreasing the amount of a nitrate reductase inhibitor.  相似文献   

18.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1167-1174
Abscisic acid (ABA) at 3.8 µM suppressed both in vivoand in vitro nitrate reductase activity in roots, stems andleaves of potato plants grown in solution culture. Suppressionwas maximal between 24 and 48 h, followed by recovery of activityat 72 h in roots and leaves and at 96 h in stems. Removal from ABA after 24 h resulted in complete recovery ofnitrate reductase activity in roots by 24 h and partial recoveryin leaves. ABA treatment enhanced nitrate accumulation in roots,decreased that of leaves, but had no effect on stem nitratecontent. ABA enhanced decay of the enzyme following nitrate removal;by 7 h activity in roots was 22.5% of the initial value comparedto 55% in the control. ABA showed a less drastic effect on lossof activity in leaves and stems. These results indicate thatABA suppression of nitrate reductase activity is not dependenton nitrate uptake, and although it reduced leaf nitrate contentthere was no clear relationship between tissue nitrate levelsand the ABA response. (Received September 13, 1984; Accepted July 1, 1985)  相似文献   

19.
Nitrate reductase activity was stimulated in roots and stems,but suppressed in leaves of potato plants grown in nutrientculture by 30 mg.liter–1 ethephon applied to the culturesolution. In stems, nitrate reductase activity was stimulatedafter 5 h and by 24 h it was more than two fold that of thecontrol. The magnitude of stimulation by ethephon was less inroots compared to stems. Ethephon treatment enhanced ethyleneproduction by roots, stems and leaves but the level of productionwas not significantly different in these organs. The stimulationof nitrate reductase activity was prevented by cycloheximideand cordycepin suggesting the involvement of new protein synthesis. Ethephon enhanced TCA precipitable protein levels in both rootsand stems while that in leaves was not significantly affected.Amino nitrogen content increased in parallel with protein contentin response to ethephon, with roots exhibiting substantial stimulation.Nitrate accumulation in stem tissues was not affected by ethephontreatment but was increased in roots at 24 and 48 h. Leaf NO3content declined with time in both ethephon-treated and controlplants and after 24 h significantly less NO3 accumulated intreated leaves. These results are explained in terms of ethephonstimulated protein synthesis and increase in cellular metabolismand permeability. (Received August 21, 1984; Accepted January 7, 1985)  相似文献   

20.
Heating intact leaves of 14–15-day-old seedlings of wheat (Triticum aestivumL.), cv. Albidum 29, for 10 min at 44–45°C brought about a decrease in nitrate reductase activity by 50–90% of the initial level. The complete recovery of the enzyme activity occurred one to two days after the plants were returned to normal temperature conditions. Darkening plants or adding cycloheximide to the nutrient medium did not interfere with the recovery of nitrate reductase activity. The plants grown in darkness or on a nitrate-free medium were devoid of nitrate reductase activity. The transfer of these plants to the light or the addition of nitrate resulted in the induction of enzyme activity. In the untreated plants, nitrate reductase activity attained the control level in 48 h; in the heated plants, this process was considerably retarded. After heating, the activity of the preexisting enzyme recovered at a higher rate than the ability for enzyme induction. This means that the reactivation of nitrate reductase occurred even when the induction of the enzyme was almost entirely suppressed. We conclude that after the short-term effect of high temperatures, the functional activity of nitrate reductase may recover without the de novosynthesis of the enzyme protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号