首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the regulation of ferredoxin–glutamate synthase (Fd-GOGAT) in leaves of barley (Hordeum vulgare L. cv. Maris Mink) at the mRNA, protein and enzyme activity levels. Studies of the changes in Fd-GOGAT during plant development showed that the activity in shoots increases rapidly after germination to reach a maximum (on a fresh-weight basis) at day 10 and then declines markedly to less than 50% of the maximal activity by day 30, this decline being correlated with an equivalent loss of Fd-GOGAT protein. Growing the plants in darkness reduced the maximum activity attained in the shoots, but did not affect the overall pattern of the changes or their timing. The activity of Fd-GOGAT increased two- to three-fold within 48 h when etiolated leaves were exposed to light, and Northern blots indicated that the induction occurred at the mRNA level. However, whilst a carbon source could at least partially substitute for light in the induction of nitrate reductase activity, no induction of Fd-GOGAT activity was seen when etiolated leaves were treated with either sucrose or glucose. Interestingly, the levels of Fd-GOGAT mRNA and activity remained high up to a period of 16 h or 72 h darkness, respectively. Compared with plants grown in N-free medium, light-grown plants supplied with nitrate had almost two-fold higher Fd-GOGAT activities and increased Fd-GOGAT mRNA levels, but nitrate had no effect on the abundance of the enzyme or its mRNA in etiolated plants, indicating that light is required for nitrate induction of barley Fd-GOGAT. Received: 23 April 1997 / Accepted: 28 May 1997  相似文献   

2.
J. Boucaud  J. Bigot 《Plant and Soil》1989,114(1):121-125
The activities of key enzymes involved in N assimilation were investigated after defoliation of 6-week-old ryegrass plants grown in water culture conditions. In a first experiment, nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities were measured in roots, stubble and leaves on the day of cutting and at 7-day intervals over the following 5-week period of regrowth. Ammonia assimilation enzymes showed little change whereas the nitrate reductase activity sharply decreased 2 weeks after clipping. In a second experiment, the nitrate reductase activity was measured at 2- or 3-day intervals 1 week before and 3 weeks after clipping.In vivo andin vitro assays both showed an increasing activity in leaves up to 8 days after cutting while root activity decreased. The opposite changes then occurred and both organs recovered their initial nitrate reductase activity levels after 12–14 days of regrowth. These fluctuations in nitrate reductase activity were considered to be related to the capacity for C assimilation and the nitrate availability.  相似文献   

3.
Summary A nitrate reductase from the thermophilic acidophilic alga, Cyanidium caldarium, was studied. The enzyme utilises the reduced forms of benzyl viologen and flavins as well as both NADPH2 and NADH2 as electron donors to reduce nitrate.Heat treatment has an activating effect on the benzyl viologen (FMNH2, FADH2) nitrate reductase. At 50°C the activation of the enzyme is complete in about 20 min of exposure, whereas at higher temperatures (until 75°C) it is virtually an instantaneous phenomenon. The observed increase in activity is very low in extracts from potassium nitrate grown cells, whereas it is 5 or more fold in extracts from ammonium sulphate supplied cells. The benzyl viologen nitrate reductase is stable at 60°C and is destroyed at 75°C after 3 min; the NADPH2 nitrate reductase is destroyed at 60°C. The pH optimum for both activities was found in the range 7.8–8.2.Ammonium nitrate grown cells possess a very low level of nitrate reductase: when they are transferred to a nitrate medium a rapid synthesis of enzyme occurs. By contrast, when cells with fully induced activity are supplied with ammonia, a rapid loss of NADPH2 and benzyl viologen nitrate reductase occurs; however, activity measured with heated extracts shows that the true level of benzyl viologen nitrate reductase is as high as before ammonium addition. It is suggested that the presence of ammonia causes a rapid inactivation but no degradation of the enzyme.Cycloheximide inhibits the formation of the enzyme; the drug is without effect on the loss of nitrate reductase activity induced by ammonium. The nitrate reductase is reactivated in vivo by the removal of the ammonium, in the absence as well as in the presence of cycloheximide.  相似文献   

4.
Some characteristics of nitrate reductase induction in Lemna minor L.   总被引:1,自引:0,他引:1  
Summary Low levels of nitrate reductase can be detected in plants of Lemna minor grown on some organic nitrogen sources. Nitrogen-starvation does not lead to a derepression of nitrate reductase activity. Nitrate ions are necessary for the development of maximum enzyme activity and the maintenance of high enzyme levels. Nitrogen-starvation of ammonia-grown plants increases the subsequent rate of nitrate-mediated induction. It is suggested that ammonium ions, either directly or indirectly modulate the rate of nitrate reductase induction. The pattern of control regulating nitrate reductase levels in Lemna is contrasted with that in some species of algae.  相似文献   

5.
Anaerobic induction of nitrate reductase in subcellular fractions of Bradyrhizobium sp. strain USDA 3045 showed fivefold increase of the enzyme activity in spheroplasts, considered as the source of intact-membrane-bound nitrate reductase, within a 3 h time frame after nitrate addition. Such a dynamics was confirmed at the protein level, with antibodies specific to membrane-bound nitrate reductase. Nitrate reductase activity in the periplasm was one order of magnitude lower and significant only at initial 3 h of induction, within a narrow range of nitrate added. Nitrite induced the membrane-bound nitrate reductase at least 70% as effectively as nitrate, as judged from its activity pattern and Western blot analysis. The limited ability of Bradyrhizobium sp. to dissimilate ≥5 mM nitrate is not due to direct inhibition of respiratory nitrate reductase by accumulated nitrite. Moreover, a synergistic induction of membrane-bound nitrate reductase by nitrate and nitrite was indicated due to a twofold higher protein synthesis after simultaneous addition of these N oxyanions than when they were given separately.  相似文献   

6.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   

7.
Summary Several yeast strains were assayed for occurence of nitrate reductase after growth in a defined medium with nitrate as the sole nitrogen source, Candida boidinii DSM 70026, showing the highest specific activity, was further investigated. The procedures for yeast fermentation and nitrate reductase purfication are described in detail. Nitrate reductase from this yeast was characterized as NAD(P)H: nitrate oxidoreductase (E.C.1.6.6.2). The enzyme activity with NADH (NADPH) was highest at pH 7.0 (7.1) and 30° C (25° C). The values of K m determinations with NADH/NADPH were both 4 × 10–4 mol/l; values for the substrate inhibition constant (K i) were 6 × 10–4 mol/l. The molecular mass of the native enzyme was estimated by gel permeation chromatography to be approximately 350 kDa. Offprint requests to: R. Gromes  相似文献   

8.
Summary Cells of Cyanidium caldarium grown with ammonia or ammonium nitrate as nitrogen source do not contain appreciable nitrate reductase activity. The alga develops the capacity to synthesize the enzyme when it is transferred from the ammonium medium to a nitrogen-free medium. Nitrate is not needed as an inducer and no enhancement in the rate of enzyme synthesis is observed when it is present. By contrast, whereas the synthesis of the enzyme in nitrogen-free medium proceeds at an increasing rate, in the nitrate medium it attains a stationary level after a short time.Nitrate grown cells possess variable amount of inactive nitrate reductase (from 9 to 60%) whereas in nitrogen-free medium the enzyme occurs principally in a fully active form. Addition of ammonia inactivates reversibly the preexisting enzyme. The inactive enzyme is measurable in the crude extract after activation by heating.It is suggested that in Cyanidium the inactivating effect of ammonia, which is the end product of nitrate reduction, in association with the repression of enzyme controls the level of nitrate reductase activity.  相似文献   

9.
The activity of enzymes participating in the systems of antioxidant protection was assayed in the second leaf and roots of 21-day-old wheat seedlings (Triticum aestivum L.) grown in a medium with nitrate (NO 3 treatment), ammonium (NH+ 4 treatment), or without nitrogen added (N-deficiency treatment). The activities of superoxide dismutase (SOD), peroxidase, ascorbate peroxidase, glutathione reductase, and catalase in the leaves and roots of the NH+ 4 plants was significantly higher than in the plants grown in the nitrate medium. The activity of SOD decreased and ascorbate peroxidase markedly increased in leaves, whereas the activity of ascorbate peroxidase increased in the roots of N-deficient plants, as compared to the plants grown in nitrate and ammonium. Low-temperature incubation (5°, 12 h) differentially affected the antioxidant activity of the studied plants. Whereas leaf enzyme activities did not change in the NH+ 4 plants, the activities of SOD, peroxidase, ascorbate peroxidase, and catalase markedly increased in the NO 3 plants. In leaves of the N-deficient plant, the activity of SOD decreased; however, the activity of other enzymes increased. In response to temperature decrease, catalase activity increased in the roots of NO 3 and NH+ 4-plants, whereas in the N-deficient plants, the activity of peroxidase increased. Thus, in wheat, both nitrogen form and nitrogen deficiency changed the time-course of antioxidant enzyme activities in response to low temperature.  相似文献   

10.
Kende H  Hahn H  Kays SE 《Plant physiology》1971,48(6):702-706
Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO3 and cytokinins. We asked the question whether cytokinins affected nitrate reductase activity directly or through NO3, either by amplifying the effect of low endogenous NO3 levels, or by making NO3 available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO3 and benzyladenine, additive responses were obtained. The effects of NO3 and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO3, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO3 was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO3 and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increasd again as a result of a second treatment with benzyladenine but not with NO3. At the time of the second exposure to benzyladenine, no NO3 was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO3.  相似文献   

11.
Nitrate reductase from wheat (Triticum aestivum L. cv Bindawarra) leaves is inactivated by pretreatment with NADH, in the absence of nitrate, a 50% loss of activity occurring in 30 minutes at 25°C with 10 micromolar NADH. Nitrate (50 micromolar) prevented inactivation by 10 micromolar NADH while cyanide (1 micromolar) markedly enhanced the degree of inactivation.

A rapid reactivation of NADH-inactivated nitrate reductase occurred after treatment with 0.3 millimolar ferricyanide or exposure to light (230 milliwatts per square centimeter) plus 20 micromolar flavin adenine dinucleotide. When excess NADH was removed, the enzyme was also reactivated by autoxidation. Nitrate did not influence the rate of reactivation.

Leaf nitrate reductase, from plants grown for 12 days on 1 millimolar nitrate, isolated in the late photoperiod or dark period, was activated by ferricyanide or light treatment. This suggests that, at these times of the day, the nitrate reductase in the leaves of the low nitrate plants is in a partially inactive state (NADH-inactivated). The nitrate reductase from moisture-stressed plants showed a greater degree of activation after light treatment, and inactive enzyme in them was detected earlier in the photoperiod.

  相似文献   

12.
Putrescine effect on nitrate reductase activity, organic nitrogen and protein contents, and plant growth under Cd or Pb (0.1 – 2 mM) and salinity (5 and 100 mM NaCl) stresses was examined in Indian mustard (Brassica juncea L. cv. RH-30) seedlings. Cd or Pb and salinity inhibited nitrate reductase activity and decreased organic nitrogen and protein contents in leaf tissue. The increased nitrate reductase activity induced by putrescine was correlated with increased organic nitrogen and protein contents and growth of plants.  相似文献   

13.
The rate of nitrate uptake by N-depleted French dwarf bean (Phaseolus vulgaris L. cv. Witte Krombek) increased steadily during the first 6 h after addition of NO3 -After this initial phase the rale remained constant for many hours. Detached root systems showed the same time-course of uptake as roots of intact plants. In vivo nitrate reductase activity (NRA) was assayed with or without exogenous NO3- in the incubation medium and the result ing activities were denoted potential and actual level, respectively. In roots the difference between actual and potential NRA disappeared within 15 min after addition of nitrate, and NRA increased for about 15 h. Both potential and actual NRA were initially very low. In leaves, however, potential NRA was initially very high and was not affected by ambient nitrate (0.1–5 mol m-3) for about 10 h. Actual and potential leaf NRA became equal after the same period of time. In the course of nitrate nutrition, the two nitrate reductase activities in leaves were differentially inhibited by cycloheximide (3.6 mmol m-3) and tungstate (1 mol m-3). We suggest that initial potential NRA reflects the activity of pre-existing enzyme, whereas actual NRA depends on enzyme assembly during NO3- supply. Apparent induction of nitrate uptake and most (85%) of the actual in vivo NRA occurred in the root system during the first 6 h of nitrate utilization by dwarf bean.  相似文献   

14.
Summary Allelism of nine nitrate reductase deficient (NR) Nicotiana plumbaginifolia cell lines was tested by complementation after protoplast fusion. Complementation was recognized by the appearance of somatic hybrid colonies growing on a selective NH4 +/NO3 medium which cannot support the growth of NR lines. All five apoenzyme defective (NA) lines were non-complementing and therefore allelic. The apoenzyme and the cofactor defective (NX) lines were complementing, as expected, and gave somatic hybrids with restored nitrate reductase activity. The four cofactor defective lines were found to belong to three complementation groups (NX1 and NX9; NX21; NX24). Two of these (NX21 and NX24) are of new types which have not been previously described in flowering plants. In the somatic hybrids restoration of NR activity was accompanied by the restoration of plant regeneration ability. On leave from: Instituto di Mutagenesi e Differenziamento CNR, Via Svezia, 10, 56100, Pisa, Italy  相似文献   

15.
Heating of wheat seedlings (Triticum aestivum L.) for 3 h at 41–42°C (heat hardening) increased the thermal stability of nitrate reductase (NR). After transferring hardened plants to normal temperature, the higher level of thermal stability persisted for 6 days. The heat hardening increased the enzyme stability against the proteolytic effect of trypsin and reduced the rate of NR degradation in extracts. Inhibition of the NR synthesis by transferring plants to a nitrate-free medium resulted in a much lower rate of enzyme degradation in the cells of hardened, as compared to unhardened plants. A short-term heating of seedlings (10 min at 36, 40, and 44°C) increased the ability of NR to reactivate after heat damage. The thermal stability of NR increased only in seedlings that had been hardened at 40 and 44°C, whereas hardening at 36°C did not result in enzyme stabilization. It is concluded that heat hardening (hyperthermia) increases NR stability against a number of inactivating factors (heating, proteolysis,in vitroand in vivo enzyme degradation) and enhances its ability to repair damage induced by heating.  相似文献   

16.
T. Borner  R. R. Mendel  J. Schiemann 《Planta》1986,169(2):202-207
The activities of nitrite reductase (EC 1.7.7.1) are 60–70% of wild-type activity in pigment-deficient leaves of the chloroplast-ribosomedeficient mutants albostrians (Hordeum vulgare) and iojap (Zea mays). The activity and apoprotein of nitrate reductase (EC 1.6.6.1.) are lacking in the barley mutant. Only very low activities of nitrate reductase can be extracted from leaves of the maize mutant. The molybdenum cofactor of nitrate reductase and xanthine dehydrogenase (EC 1.2.3.2) is present in maize and barley mutant plants. However, it is not inducible by nitrate in pigment-deficient leaves of albostrians. From these results we conclude: (i) Nitrite reductase (a chloroplast enzyme) is synthesized in the cytoplasm and does not need the presence of nitrate reductase for the induction and maintenance if its activity. (ii) The loss or low activity of nitrate reductase is a consequence of the inability of the mutants to accumulate the apoprotein of this enzyme. (iii) The chloroplasts influence the accumulation (i.e. most probably the synthesis) of the nonchloroplast enzyme, nitrate reductase. The accumulation of nitrate reductase needs a chloroplast factor which is not provided by mutant plastids blocked at an early stage of their development.Abbreviations CRM cross-reacting material - Mo-co molybdenum cofactor - NiR nitrite reductase - NR nitrate reductase  相似文献   

17.
In liquid culture on a defined growth medium, Penicillium sp. AK96151 efficiently degraded the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, hexogen), causing > 80 % disappearance after 10 d. RDX degradation was reduced to a basal level (< 15 % degraded after 10 d) by the presence of > 150 μM ammonium ions or when the molybdenum component of the medium was replaced by sodium tungstate. An equivalent effect of ammonium, molybdenum and tungsten was observed in protoplasts of this fungus assayed for nitrate reductase activity. This enzyme was not inhibited by RDX itself. The involvement of a nitrate reductase in RDX degradation by Penicillium has practical implications for bioremediation strategies which are discussed.  相似文献   

18.
The importance of light to the induction of nitrate reductase activity in barley (Hordeum vulgare L.) was studied. Activity in etiolated leaves in darkness stayed at a low endogenous level even while large amounts of nitrate were actively accumulated. Light was required for any increase in activity, though the requirement may be satisfied to a limited extent before nitrate is available. Nitrate reductase activity was induced in the dark in green leaves which had not previously had nitrate but were supplied nitrate at the beginning of the dark period. If the nitrate then made available was sufficient, nitrate reductase activity increased until the effect of the previous light treatment was exhausted. Activity then decreased even though nitrate uptake continued. Upon returning the leaves to light, enzymatic activity increased again, as expected. Nitrate uptake was eliminated as an experimental variable by giving dark-grown plants nitrate, then detaching the leaves for induction studies. Under these conditions light saturation occurred between 3600 and 7700 lux at exemplary periods of illumination. At intensities of 3600 lux and above, activity increased sharply after a 6-hour lag period. As light intensity was decreased below 3600 lux the lag period became longer. Thus, when sufficient nitrate was available, the extent of induction of nitrate reductase activity was regulated by light.  相似文献   

19.
Nitrate reductase activity was inhibited as a result of reduced soil moisture potentials or application of NaCI to nutrient solutions. The decrease in enzyme activity of wheat seedlings exposed to salinity, was found 24 hours after exposure to stress. The effect of stress on nitrate reductase was found in cell-free extracts as well as in riro in assays of intact leaf sections. A recovery in enzyme activity was found after irrigation or after removal of seedlings from salinity. While relative water content of the leaves was restored within 3 hours after removal of stress, full recovery of enzyme activity occurred only after 24 hours. Cycloheximide and chloramphenicol suppressed the activity of nitrate reductase in non-stressed seedlings, but had no effect on the activity of plants exposed to salinity. However, during removal of stress, cycloheximide prevented completely the recovery of nitrate reductase, while chloramphenicol did not interfere with the recovery of the inhibited enzyme activity. It is concluded that a fraction of nitrate reductase may be located in the cytoplasm and lost activity during stress, probably due to inhibited protein synthesis. Another fraction which may be associated with chloroplasts, was inhibited by stress due to conformational changes or partial denaturation.  相似文献   

20.
Nitrate reduction was studied in the dinoflagellatePeridinium cinctum collected from extensive algal blooms in Lake Kinneret (Israel).Among several methods tested for the preparation of cell free extracts, only the use of a ground-glass tissue culture homogenizer was found to be efficient. The assimilatory nitrate reductase ofP. cinctum was located in a particulate fraction. In this respect,P. cinctum did not behave like other eukaryotes, such as green algae, but as a prokaryote. Nitrite reductase activity was found in the soluble fraction.Nitrate reductase used NADH as a preferable electron donor; it reacted also with NADPH but only to give 16.5% of the NADH dependent rate. Methyl viologen and benzyl viologen could also serve as electron donors, with rates higher than the NADH dependent activity (3–6 times and 1.5–3 times, respectively). The Km of nitrate reductase for NADH was 2.8×10–4 M and for NO3-1.9×10–4 M. Flavins did not stimulate the activity, nor was ferricyanide able to activate it. Carboxylic anions stimulated nitrate reductase activity 3–4 fold, an effect which was not mimicked by other anions.Chlorate, azide and cyanide were competitive inhibitors ofP. cinctum, nitrate reductase withK i values of 1.79×10–3 M, 2.1×10–5 M and 8.9×10–6 M respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号