首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
独叶草叶二叉分枝脉序中网结脉和盲脉的形态学研究   总被引:13,自引:1,他引:12  
对独叶草营养叶二叉分枝脉序及其中的网结脉和盲脉的形态学研究表明:(1)网结脉中2条完全汇合的与靠近脉中完全分离的叶脉之间未发现任何形式的维管束汇合的中间类型及网结脉中具有不同程度的连接脉退化痕迹的事实表明,网结脉不可能由靠近脉产生,相反,由于网结脉中联结脉的退化而形成开放脉;(2)盲脉是通过伴随着齿退化的达齿脉的退化、网结脉中联结脉的间断、非网结脉由分枝处间断三种方式产生的;(3)越裂片脉的出现及其可以形成网结脉的现象表明独叶草营养叶可能曾具有较为复杂的脉序,这种叶脉也呈现出退化的趋势;(4)独叶草营养叶的二叉分枝脉序可能是一种退化性状,而网结脉的出现可能是这种退化过程中的残留痕迹。  相似文献   

2.

Background  

Structural elucidation and analysis of fructifications of plants is fundamental for understanding their evolution. In case of Ginkgo biloba, attention was drawn by Fujii in 1896 to aberrant fructifications of Ginkgo biloba whose seeds are attached to leaves, called O-ha-tsuki in Japan. This well-known phenomenon was now interpreted by Fujii as being homologous to ancestral sporophylls. The common fructification of Ginkgo biloba consists of 1-2 (rarely more) ovules on a dichotomously divided stalk, the ovules on top of short stalklets, with collars supporting the ovules. There is essentially no disagreement that either the whole stalk with its stalklets, collars and ovules is homologous to a sporophyll, or, alternatively, just one stalklet, collar and ovule each correspond to a sporophyll. For the transition of an ancestral sporophyll resembling extant O-ha-tsuki aberrant leaves into the common fructification with stalklet/collar/ovule, evolutionary reduction of the leaf lamina of such ancestral sporophylls has to be assumed. Furthermore, such ancestral sporophylls would be expected in the fossil record of ginkgophytes.  相似文献   

3.
Foster , Adriance S. (U. California, Berkeley), and Howard J. Arnott . Morphology and dichotomous vasculature of the leaf of Kingdonia uniflora. Amer. Jour. Bot. 47 (8): 684–698. Illus. 1960.—An intensive study of the nodal anatomy, petiolar vasculature and open dichotomous venation of the leaf of Kingdonia has revealed a type of foliar vascular system of unusual morphological and phylogenetic interest. The vascular supply at the nodal level consists of 4 collateral traces which diverge from a single gap into the sheathing leaf base. This type of nodal anatomy is perhaps primitive, and comparisons are made with the unilacunar nodes and the 2- and 4-parted leaf trace systems characteristic of many angiospermous cotyledons and the foliage leaves of certain woody ranalian genera. The petiole of Kingdonia is vascularized by 2 pairs of bundles which represent the upward continuation of the 4 leaf traces. A transition from an even (4) to an odd (3) number of strands occurs near the point of attachment of the 5, lobed, cuneiform lamina segments to the petiole. Each of the 2 abaxial bundles dichotomizes and the central derivative branches fuse to form a double bundle which enters the base of the median lamina segment. The 2 adaxial petiolar bundles diverge right and left into the bases of the paired lateral segments of the lamina. An analogous type of transition from an even to an odd number of veins occurs in many angiospermous cotyledons which develop a definable mid-vein. But, in Kingdonia, the bundles which enter the bases of the lamina segments give rise to systems of dichotomizing veinlets devoid of “mid-veins.” Although the majority of the terminal veinlets enter the marginal teeth of the lamina segments, “blind” endings, unrelated to the dentations, occur in all the leaves studied. Typically, all of the vein endings in a given lobule of a lamina segment are derived from the same dichotomous vein system. However, in some leaves, a veinlet dichotomizes directly below a sinus and the branches diverge into the marginal regions of 2 separate lobules. The phylogenetic significance of the occurrence of open dichotomous venation in such an herbaceous angiosperm as Kingdonia is briefly discussed. From a purely morphological viewpoint, the Kingdonia type of venation invites direct comparison with the venation of Sphenophyllum, certain ferns or Ginkgo rather than with any of the known reticulate venation patterns of modern angiosperms. Although the foliar venation of Kingdonia may represent the result of evolutionary reversion, the very rare anastomoses which occur seem primitive in type rather than “vestiges” of a former system of closed venation.  相似文献   

4.
Arnott , Howard J., and Shirley C. Tucker . (Northwestern U., Evanston, Ill.) Analysis of petal venation in Ranunculus. I. Anastomoses in R. repens v. pleniflorus. Amer. Jour. Bot. 50(8): 821–830. Illus. 1963.—The venation patterns of 1218 petals of Ranunculus repens v. pleniflorus were analyzed, with particular attention to the number and position of vein anastomoses. The essentially open dichotomous vascular pattern is complicated by the presence of vein fusions in 69.4% of the petals. The anastomosis ratio (number of anastomoses/number of appendages) is, therefore, high (1.37), compared to a maximal 0.61 for Ginkgo leaves. Of the petals having such fusions, 55.3% have more than 1 anastomosis; the maximal number of fusions found per petal is 8. The presence of anastomoses shows a high degree of correlation with petal size and petal lobing. The types of fusions (types A, B, C, D) are identical with those found in Ginkgo leaves, with the addition of 2 modifications of type C. Curiously, types C and D account for 98.7% of the total anastomoses, while types A and B are rare. An analysis of the location of each type within the petal shows that type C's are disproportionately numerous along the distal periphery, and that type-D fusions are unusually numerous in the central and basal regions. Such evidence suggests that the occurrence of a vein fusion is no “accident,” but rather that it is one manifestation of morphogenetic control.  相似文献   

5.
Pinnule development was investigated in two fern species, Adiantum raddianum Presl cv. Decorum and Cheilanthes viridis (Forsk.) Swartz, by using clearings to facilitate the recording of mitotic divisions. Both species were found to possess a marginal meristem. This meristem consists of both a marginal row of large initials and a submarginal meristematic zone. The marginal meristem in these ferns is responsible for establishing the layers of the lamina, providing new cells which by enlargement will expand the pinnule, establishing general pinnule form, initiating the procambial stands, and forming the false indusia. The cells of the submarginal meristem were found to divide parallel to the pinnule margin more frequently if they were to become ground tissue, while dividing perpendicular to the margin more frequently if they were to become procambial. Details of vein dichotomies were also studied. Perimeter expansion was found to be associated with dichotomy of the veins, and venation pattern was found to be correlated with leaf form. The marginal meristem is active from the time of pinnule initiation until the pinnule reaches about 50% of its final length or width. Leaf development in leptosporangiate ferns resembles the traditional concept of development in angiosperms somewhat more than it does the more recent concepts. It is clear, though, that there is not a high degree of convergence in the marginal growth of fern and angiosperm leaves.  相似文献   

6.
Twelve species belonging to seven monocotyledonous families:Hydrocharitaceae, Taccaceae, Dioscoreaceae, Smilacaceae, Araceae,Alismataceae and Aponogetonaceae show reticulate venation typicalof dicotyledons. A study of the leaves of these species showsthat venation patterns are usually curvipalmate-convergate,occasionally rectipalmate or collimate, and rarely pinnate lyratetype. Number, size and shape of areoles, number of primaries,number of secondaries along one side of the primaries, anglebetween 1 and 2° veins and number of vein endings per areoleare given for each species. Intesecondary veins, isolated tracheids,loops, extension cells, raphide and raphide idioblasts and terminaltracheids were observed. Marginal ultimate venation is mostlyarcuate. Major and minor veins are jacketed by parenchymatousbundle sheath cells. The lamina of Tacca leontopetaloides, Colocasiaesculenta and Scindapsus aureus show a single midrib-like centralregion similar to that of dicotyledonous leaves, and it is multistrandedin Aponogeton natans, Limnophyton obtusifolium and Ottelia alismoides.The degree of vein order is most commonly up to fourth or fifthand rarely up to sixth in Dioscorea hispida. Monocotyledons, leaf architecture, vein endings, venation, areoles  相似文献   

7.
Hydraulic architecture of leaf venation in Laurus nobilis L.   总被引:3,自引:3,他引:0  
Veins are the main irrigation system of the leaf lamina and an understanding of the hydraulic architecture of the vein networks is essential for understanding leaf function. However, determination of leaf hydraulic parameters is challenging, because for most leaves the vein system is reticulate, contains a hierarchy of different vein sizes, and consists of leaky conduits. We present a new approach that allows for measurements of pressure differences between the petiole and any vein within the leaf. Measurements of Laurus nobilis leaves indicate that first‐ and second‐order veins have high axial conductance and relatively small radial permeability, thus allowing water to reach distal areas of the leaf with only a small loss of water potential. Higher order veins tend to be more hydraulically resistant and permit greater radial leakage. This design allows for a relatively equitable distribution of water potential and thus reflects the capacity of the venation to provide a relatively homogeneous water supply across the leaf lamina, with only the leaf margins being hydraulically disadvantaged relative to the rest of the leaf.  相似文献   

8.
The ontogeny of the major venation in the lamina of Populus deltoides Bartr. leaves was investigated in relation to the development of original procambial bundles, subsidiary bundles, and their derivatives. Serial sections and clearings were used to show that the midrib region is a composite structure consisting of several independent vascular bundles, each of which eventually diverges into the lamina to become a secondary vein. The sequence of events in the ontogeny of major secondary veins is: (1) an original procambial strand develops acropetally and becomes the precursor of the first vascular bundle of the midrib region of the lamina, (2) ground tissue at the forefront of acropetally developing subsidiary procambial bundles differentiates in a wavelike continuum; meristematic regions precede the acropetally developing procambial bundles, (3) discrete subsidiary bundles differentiate in the meristematic regions as they advance acropetally, (4) subsidiary bundles diverge obliquely in the lamina margin giving rise to the secondary veins in a basipetal fashion, and (5) subsequent differentiation and maturation of the secondary veins occurs within the lamina. The original procambial bundles and first-formed subsidiary bundles become the secondary veins of the uppermost portions of the lamina, the next-formed subsidiary bundles become the secondary veins of the middle portions of the lamina, and the last-formed subsidiary bundles become the secondary veins of the lowermost portion of the lamina.  相似文献   

9.
Leaf venation patterns of 150 species of Euphorbia are presented and their value as a diagnostic feature in the genus assessed. Based on the gross venation patterns, the species have been grouped into uni-, bi-, tri-veined and special categories. The majority of the species studied belonged to the tri-veined category, in which ornamentation of the veins and the course of traces in the lamina proved useful additional characters. Features such as the size of the areoles, the number of vein endings, and their further ramifications and composition in each areole varied in the same leaf or in different leaves of a given species. Furthermore, no direct correlation could be established between the areole size and the numbers of vein endings and tips per areole. Forty species possess a parenchymatous vein sheath. Globular chloroplasts showed up conspicuously in the sheath cells of a few species. Dilated tracheidal elements, localized on the venules or at the tips of vein endings, are characteristic of the xerophytic species. In some instances, correlation was apparent between plants grouped according to their venation patterns and their habit.  相似文献   

10.
Leaves constitute a substantial fraction of the total resistance to water flow through plants. A key question is how hydraulic resistance within the leaf is distributed among petiole, major veins, minor veins, and the pathways downstream of the veins. We partitioned the leaf hydraulic resistance (R(leaf)) for sugar maple (Acer saccharum) and red oak (Quercus rubra) by measuring the resistance to water flow through leaves before and after cutting specific vein orders. Simulations using an electronic circuit analog with resistors arranged in a hierarchical reticulate network justified the partitioning of total R(leaf) into component additive resistances. On average 64% and 74% of the R(leaf) was situated within the leaf xylem for sugar maple and red oak, respectively. Substantial resistance-32% and 49%- was in the minor venation, 18% and 21% in the major venation, and 14% and 4% in the petiole. The large number of parallel paths (i.e. a large transfer surface) for water leaving the minor veins through the bundle sheath and out of the leaf resulted in the pathways outside the venation comprising only 36% and 26% of R(leaf). Changing leaf temperature during measurement of R(leaf) for intact leaves resulted in a temperature response beyond that expected from changes in viscosity. The extra response was not found for leaves with veins cut, indicating that water crosses cell membranes after it leaves the xylem. The large proportion of resistance in the venation can explain why stomata respond to leaf xylem damage and cavitation. The hydraulic importance of the leaf vein system suggests that the diversity of vein system architectures observed in angiosperms may reflect variation in whole-leaf hydraulic capacity.  相似文献   

11.
Glossopteris-type leaves are the most abundant floristic element from the Gondwanan continent and are recorded throughout the Permian, which was a period of extreme icehouse-to-hothouse climatic global change. Fossil leaf traits can be useful for the reconstruction of palaeoenvironments and identification of climatic changes throughout geological time, but the conservative morphology of Glossopteris leaves has thus far made them difficult to use for this purpose. If the characters of Glossopteris can be better quantified then it should make them useful for tracking environmental changes over a wide geographical area and over a long time interval. Venation density is a highly variable leaf trait that might be useful for this purpose. This trait can be calculated, usually as vein length per centimetre squared, but this can be a time-consuming procedure. In this paper we propose a new rapid method to estimate venation density in a conical sector of Glossopteris leaf lamina using an accurate linear model whose predictors are three linear venation densities, measured as veins per centimetre. In addition to substantially reducing the data collection time, it is less biased and more reproducible than methods applied previously with this leaf type. Using this more robust method, preliminary results significantly distinguish the venation densities of leaves produced in wet and drier ecosystems, matching a pattern similar to modern plants. This is the first survey using a large sample size to reveal that environmental stress controlled the vein architecture of Palaeozoic plants, in a manner similar to plants in modern ecosystems.  相似文献   

12.
Ginkgo biloba 《Flora》2004,199(5):437
Although the subject of several studies, the phylogeny of Ginkgo biloba is still ambiguous. Most of the morphological and some palaeontological studies assume a close relationship to conifers, but other palaeontological studies regard the origin of Ginkgo biloba in groups that exhibit a pinnate bauplan like Peltaspermales or Dicranophyllales. This divergence has led to controversial interpretations of male sporangiophores and leaves. Attempting to resolve this, here we have investigated the male cones and leaves of short-shoots by SEM and light-microscopy. Our results indicate that the male sporangiophores are simple structures, and the observed formation of thickened cell walls at the sterile adaxial side of the sporangiophores, similar to the endothecium of the sporangia, gives weak support for a precursor of Ginkgo-sporangiophores that displayed simple male sporangiophores with radial arrangement of the sporangia. Thus, our interpretations of the male sporangiophores of Ginkgo biloba allude to a relationship with Coniferales, Gnetales and Cordaitales and reject a close relationship of Ginkgo biloba with pinnate groups like Cycadaceae, as assumed by some molecular studies. In contrast to previous studies on long-shoot leaves, our results on short-shoot leaves give no indication for a compound character of Ginkgo leaves. Moreover, we infer that Ginkgo leaves could be derived from a simple bauplan, by two modifications of the basic growth pattern of conifer leaves, assuming that the dissection of Ginkgo leaves is secondary. Although more comparative investigations are necessary, our results support a coniferophyte origin of the Ginkgoales.  相似文献   

13.
Development commonly involves an interplay between signaling, genetic expression and biophysical forces. However, the relative importance of these mechanisms during the different stages of development is unclear. Leaf venation networks provide a fitting context for the examination of these questions. In mature leaves, venation patterns are extremely diverse, yet their local structure satisfies a universal property: at junctions between veins, angles and diameters are related by a vectorial equation analogous to a force balance. Using a cell proliferation model, we reproduce in silico the salient features of venation patterns. Provided that vein cells are given different mechanical properties, tensile forces develop along the veins during growth, causing the network to deform progressively. Our results suggest that the local structure of venation networks results from a reorganization driven by mechanical forces, independently of how veins form. This conclusion is supported by recent observations of vein development in young leaves and by the good quantitative agreement between our simulations and data from mature leaves.  相似文献   

14.
星叶草叶脉序的形态学及其系统学意义   总被引:5,自引:1,他引:4  
在星叶草叶二叉分枝脉序中,网结脉中2条完全汇合叶脉与靠近脉中完全分离叶脉间未发现任 何形式的维管束汇合的中间类型,相反观察到了网结脉中不同程度的连接脉退化的痕迹,因此网结脉不可能由靠近脉形成;盲脉的出现与齿的退化、网结脉中连接脉的间断及非网结脉由分枝处间断等相关;上述事实表明星叶草叶的二叉分枝脉序应为一减化性状。  相似文献   

15.
16.
We describe here fossil leaves and fruits assignable to the family Nelumbonaceae Dumortier 1828. Fossils were collected at the Cañadón del Irupé locality, La Colonia Formation (Campanian–Maastrichtian, Upper Cretaceous), Chubut Province, Patagonia, Argentina. The fossil leaves are simple, with symmetrical and peltate lamina, orbicular in shape, and an entire margin. The venation is truly actinodromous with at least 15 primary veins, the secondary veins are poorly developed and intercalated with the primary veins, the third category vein is opposite, and the areoles are well-developed and 4- to 5-sided. These features are characteristic of the extant genus Nelumbo Adamson 1763, and the presence of these characters in the fossils allows their placement within this genus. Reproductive structures, similar to the fruit-receptacle of Nelumbo with fruits in situ, were found associated but not in organic connection with the leaves. These fossils constitute the only and oldest record for the family in the Southern Hemisphere. This record indicates that Nelumbo was more widespread in the past than today.  相似文献   

17.
王永  何顺志 《广西植物》2015,35(4):476-486
采用制作叶脉标本和透明叶标本的方法,对贵州产28种2变种小檗属植物叶脉特征进行比较研究。结果表明:贵州小檗属植物的脉序类型有5种:半达缘羽状脉、花环状半达缘羽状脉、简单弓形羽状脉、花环状弓形羽状脉和混合型。叶脉分支一般有五级:1一级脉构架均为羽状脉,粗度有很粗、粗、中等粗细和纤细四种类型,分支方式包括单轴分支和合轴分支;2粗二级脉构架中有分支达缘或分支均不达缘,与中脉夹角变化各异,内二级脉存在或缺失,细二级脉半达缘、真曲行或简单弓形,间二级脉类型复杂多变但频度种间有差异;3三级脉贯串型、结网型或分支型;4四、五级脉网状或自由分支且常混合在一起。脉间区从发育差到良好,小脉从不分支到不均等分支等各种类型均有,叶缘末级脉缺失、不完整、钉状和环状。大部分种类叶缘具齿,每1cm齿数目和齿内腺点的特性等特征在不同种类间有区别,具有鉴定价值,但齿其它特征复杂多变或种间区别较小,同时齿内脉性状也不稳定。此外,齿的有无会对脉序类型产生影响。小檗属植物叶脉类型存在种间差异,具有重要的分类学价值,叶脉类型的变化和复杂程度显示了该属植物的进化特点;叶齿的有无和齿特征具有分类学和系统学意义。基于叶脉特征的研究结果并结合重要的外部形态学特征编制了贵州小檗属植物的分种检索表。研究结果可为小檗属植物分类寻找新的依据并探讨其系统学意义。  相似文献   

18.
依据植物野外和腊叶标本形态观察以及小叶脉序观察,对贺兰山岩黄耆(豆科)及其近缘种进行了分类学研究。结果表明:贺兰山岩黄耆及其近缘种之间较为稳定的差别体现在花器官的形态方面。贺兰山岩黄耆与短翼岩黄耆的主要区别特征是小苞片长为萼筒的1~2倍,旗瓣与龙骨瓣近等长,而后者的小苞片长为萼筒的0.5~0.8倍,旗瓣长为龙骨瓣的0.8倍。贺兰山岩黄耆与华北岩黄耆和费尔干岩黄耆的主要区别是翼瓣长为龙骨瓣的0.3~0.5倍,而后二者的翼瓣长均为龙骨瓣的0.7~0.8倍。在小叶脉序特征方面,贺兰山岩黄耆与短翼岩黄耆和华北岩黄耆近似,均为小叶一级脉纤细,二级脉不分支,二级脉环外有较多网结三级脉,具少量复合二级间脉或不明显,而费尔干岩黄耆小叶一级脉粗,二级脉多分支,二级脉环外有少量网结三级脉,具明显的简单二级间脉。此外,小叶脉序特征可能在岩黄耆属组间关系的探讨中发挥作用。  相似文献   

19.
We explore the possible role of elastic mismatch between epidermis and mesophyll as a driving force for the development of leaf venation. The current prevalent ‘canalization’ hypothesis for the formation of veins claims that the transport of the hormone auxin out of the leaves triggers cell differentiation to form veins. Although there is evidence that auxin plays a fundamental role in vein formation, the simple canalization mechanism may not be enough to explain some features observed in the vascular system of leaves, in particular, the abundance of vein loops. We present a model based on the existence of mechanical instabilities that leads very naturally to hierarchical patterns with a large number of closed loops. When applied to the structure of high-order veins, the numerical results show the same qualitative features as actual venation patterns and, furthermore, have the same statistical properties. We argue that the agreement between actual and simulated patterns provides strong evidence for the role of mechanical effects on venation development.  相似文献   

20.
It is generally accepted that various physiological, morphological and gene expression phenomena are under the control of a circadian clock, and that this time keeping mechanism is universally present. Although such endogenously regulated phenomena have first been documented in plants more than 250 years ago and much work has been accumulated particularly in the past 70 years, it was not obvious from the literature whether such time keeping mechanisms exist in gymnosperms. Two prominent parameters were investigated in several gymnosperm species which have been demonstrated to be under the control of a circadian clock in many plants: (i) leaf movement and (ii) stomata movement. In young plants of Pinus sylvestris, Picea abies, Taxus baccata, Araucaria angustifolia, Araucaria heterophylla and Ginkgo biloba leaf oscillations could be recorded for about 5 days. However, compared to angiosperm plants, the amplitude was small. The period length under free running conditions (constant temperature and continuous light) was characteristic for the species. Stomatal movement was observed in Ginkgo biloba leaves by electron microscopy. Stomata were open at noon and closed at midnight under normal day/night conditions (LD) as well as under constant light conditions (LL), indicating that stomatal aperture is under circadian control in the gymnosperm Ginkgo biloba. Online recordings of stomata conductance however, exhibited diurnal but not circadian oscillations of net CO2-exchange in G. biloba leaves. Our results show that a circadian clock controls leaf and stomatal movements in gymnosperm species indicating that endogenous time keeping mechanisms are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号