首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In the genusCoptis, some interesting features are found which are considered important phylogenetically. The median bundles of petiole and petiolule, and the midrib of lamina are double. They seem to represent a transitional situation between a dichotomy and a single median bundle found in usual angiospermous venation. The double bundle is either derived from 2 independent leaf trace bundles or formed by dichotomy of a leaf trace bundle, and it does not seem so important whether the number of trace bundles is even or odd. The nodal structure is trilacunar or pentalacunar with 3, 4, 6 or 8 trace bundles. The upper part of the carpel does not produce ovules and is open from the initiation of the carpel. It is suggested that the carpel becomes open secondarily concomitant with the reduction of ovules. This shows that the closure of the carpel is not perfectly established.  相似文献   

2.
The topologic arrangement of petiolar bundles varies within the length of the cottonwood petiole. Each petiolar bundle is formed by the subdivision and aggregation of acropetally differentiating subsidiary bundles in a predictable pattern. The subsidiary bundles provide vascular continuity between the stem and specific portions of the leaf lamina. Spot-labeling of individual veins with 14CO2, freeze substitution, and microautoradiography were used to establish the relation between the secondary veins of the lamina and the vasculature of the petiole. Within the petiole vasculature each subsidiary bundle was continuous with a specific portion of the lamina and seemed to have a separate function. Subsidiary bundles continuous with the central leaf trace were closely related functionally to the tip region of the lamina, while the subsidiary bundles continuous with the lateral leaf traces were functionally related to the middle and basal portions of the lamina.  相似文献   

3.
4.
Microautoradiography was used to follow the translocation pathways of 14C-labeled photosynthate from mature source leaves, through the stem, to immature sink leaves three nodes above. Translocation occurred in specific bundles of the midveins and petioles of both the source and sink leaves and in the interjacent internodes. When each of six major veins in the lamina of an exporting leaf was independently spot-fed 14CO2, label was exported through specific bundles in the petiole associated with that vein. When the whole lamina of a mature source leaf was fed 14CO2, export occurred through all bundles of the lamina, but acropetal export in the stem was confined to bundles serving certain immature sink leaves. Cross-transfer occurred within the stem via phloem bridges. Leaves approaching maturity translocated photosynthate bidirectionally in adjacent subsidiary bundles of the petiole. That is, petiolar bundles serving the lamina apex were exporting unlabeled photosynthate while those serving the lamina base were simultaneously importing labeled photosynthate. The petioles and midveins of maturing leaves were strong sinks for photosynthate, which was diverted from the export front to differentiating structural tissues. The data support the idea of bidirectional transport in adjacent bundles of the petiole and possibly in adjacent sieve tubes within an individual bundle.Abbreviations C central leaf trace - L left leaf trace - LPI leaf plastochron index - R right leaf trace  相似文献   

5.
We conducted a comparative anatomical study of the petiole of 16 taxa belonging to the tribe Sorbarieae (Rosaceae) (Adenostoma, 2 spp.; Chamaebatiaria, 1 sp.; Sorbaria, 6 spp., 3 vars., and 1 forma; and Spiraeanthus, 1 sp.) and the related genus Lyonothamnus (1 sp. and 1 ssp.). The distal, medial and proximal regions of petioles were transversely sectioned using conventional embedding and staining methods. Cuticles, crystals, trichomes and pericyclic fiber patterns were observed and studied. Three types of vascular nodal patterns were recognized: Type 1 was seen in Chamaebatiaria, Lyonothamnus, and Spiraeanthus (simple‐trace nodal pattern with slightly curved or U‐shaped vascular bundle); type 2 was found in Adenostoma (multiple‐traces nodal pattern with free vascular bundles); and type 3 was unique to Sorbaria (bundles fused to form a siphonostele nodal pattern). Some petiolar anatomical characteristics (e.g. cuticles, crystals, trichomes, vascular nodal pattern, and pericyclic fiber patterns) were found to provide useful information for taxonomic studies within Sorbarieae. On the basis of these characteristics, a dichotomous key for identification at the generic/specific level is provided. We also report a structural change in the vascular bundles from the stem‐leaf transitional zone to the leaf medial zone.  相似文献   

6.
Anatomical features of the petiole in several species of Jatropha L. (Euphorbiaceae) are presented as evidence in support of infrageneric relationships. A trilacunar 3-trace nodal pattern is typical for the genus. The vascular supply to the stipules is derived from the branching of the two peripheral leaf traces. The number of vascular bundles range from 11 through 9, 7, 5 and 3, and occur in a ring, as free traces, a medullated cylinder, or as U-shaped free traces. The reduction from nine to three bundles is correlated with the gross morphological features while 11, which occurs only in the section Peltatae (Pax) Dehgan & Webster, presents an increase. Reduction in the number of petiolar traces follows the evolutionary advancement of various taxa. This reduction in traces corresponds with south-north distribution of the species and consequential adaptation to colder and more arid climates in Central America and Africa. Smaller leaves, fewer primary veins and fewer vascular traces have resulted as a response to reduced need for water. Presence of dorsal (super-numerary) bundles which supply the petiolar glands in subgenus Jatropha (= Adenoropium Pax) is considered significant, since African taxa of the section (subsection Pubescentes Pax) have retained these bundles despite the loss of petiolar glands. The latter glands are prominent in the South American and Indian species. Sectional lines in the genus can, therefore, be drawn generally on the basis of numerical constancy and relative uniformity in the arrangement of petiolar traces. The continuity of vascular bundles from the stem into the petiole and variations of bundle arrangements are depicted in three-dimensional drawings.  相似文献   

7.
The pollen of three monotypic genera, Circaeaster, Kingdonia, and Sargentodoxa has been examined by light and scanning electron microscopy and in the case of the last genus, also by transmission electron microscopy. The type of tectum found in Circaeaster and Kingdonia, derivations of a compound layer of striae, has a restricted distribution in the Order Ranunculales. Of 64 genera examined in this order only six had species with a similar tectum. They include Achlys, Epimedium, Jeffersonia, and Vancouveria of the Berberidaceae s.l., the controversial Hydrastis, and Trollius of the Ranunculaceae. Circaeaster and Kingdonia have been considered as related since both have rare and primitive vegetative characteristics, the most notable being open dichotomous leaf venation. They are probably best treated as a ditypic family, Circaeasteraceae. The pollen of Sargentodoxa, especially the structure of the exine, closely resembles that of the Lardizabalaceae. However, the fruits of Sargentodoxa have been considered to be distinct from those of the Lardizabalaceae, suggesting that it be treated as a separate, but closely allied, family.  相似文献   

8.
Development of the Populus leaf is presented as a model system to illustrate the sequence of events that occur during the sink to source transition. A Populus leaf is served by three leaf traces, each of which consists of an original procambial trace bundle that differentiates acropetally and continuously from more mature procambium in the stem and a complement of subsidiary bundles that differentiates bidirectionally from a leaf basal meristem. During development these subsidiary bundles maintain continuity through the meristematic region of the node. The basipetally developing subsidiary bunles form phloem bridges that serve to integrate adjacent leaf traces of the stem vasculature. Distal to the node the acropetally developing bundles from all three leaf traces are reoriented in a precise and orderly sequence to form tiers of petiolar bundles. These tiers of bundles extend into the midrib where bundles diverge at intervals as the major lateral veins. The dorsal-most tier of bundles extends to the lamina tip and each successive tier of bundles contributes to lateral veins situated more proximally in the lamina. Although the midrib and the major vein system differentiate acropetally in the lamina, they mature basipetally. Maturation of the mesophyll and other lamina tissues also mature basipetally. As a consequence of the basi-petal maturation process, the lamina tip matures very early and begins exporting photosynthates while the lamina base is still importing from other leaves. The transition of a leaf from sink to source status must therefore be considered as a progression of structural and functional events that occur in synchrony.  相似文献   

9.
10.
Eggert , Donald A. (Southern Illinois U., Carbondale.) Studies of Palerzoic ferns: The frond of Ankyropteris glabra. Amer. Jour. Bot. 50(4): 379–387. Illus. 1963—The major features of the frond of A. glabra are described on the basis of preserved parts found in Middle Pennsylvanian coal ball material from Illinois. The frond is planated and has well-developed foliar laminae. Primary pinnae arise from the petiole in 2 alternating series, and secondary pinnae arise in a similar fashion from the primary pinnae. Foliar laminae occur on the secondary pinnae and have dichotomous venation. The xylem of the petiole has a diupsilon configuration in the lower part of the axis, while higher in the petiole the xylem forms a strand resembling that of the European species A. westfaliensis. The xylem strands of the primary pinnae arise from the adaxial antennae of the petiolar vascular strand as somewhat C-shapcd bodies and develop antennae and become H-shaped at higher levels. A gap occurs in the antenna of the petiole vascular system above the level of departure of the primary pinna trace. Terete vascular strands occur in the secondary pinna axes which arise from the adaxial antennae of the xylem of the primary pinnae. The foliar laminae are relatively thin, have an irregular outline, and their histology is like that found in many living ferns. The frond of A. glabra illustrates that leaf evolution had progressed in at least one species of the coenopterid family Zygopteridaceae to the extent that an essentially 2-dimensional frond of modern aspect, and with well-developed foliar laminae, was present by Middle Pennsylvanian time.  相似文献   

11.
After the further studies on the open dichotomous leaf venation ofKingdonia andCircaeaster, we considered that the venation of these genera is incomparable to that of some gymnosperms such as Ginkgoaceae, and is a degenerated characteristic in the morphological nature. We also considered that this characteristic is very important on determining the systematic relationship between these genera and other members of Ranunculales (sensu Takhtajan 1980), but its implication in the phylogeny of angiosperms was overemphasized. The project was supported by The National Natural Science Foundation of China (No. 39630030) and The Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences.  相似文献   

12.
The leaf of Amaranthus retroflexus L. was examined with the light microscope to determine its vasculature and the spatial relationship of the vascular bundles to the mesophyll. Seven leaf traces enter the petiole at the node and form an arc that continues acropetally in the petiole as an anastomosing system of vascular bundles. Upon entering the lamina, the arc of bundles gradually closes and forms a ring of anastomosing bundles that constitutes the primary vein, or midvein, of the leaf. As the midvein progresses acropetally, branches of the bundles nearest the lamina diverge outward and continue as secondary veins toward the margin on either side of the lamina. Along its course the midvein undergoes a gradual reduction in number of bundles until only one remains as it approaches the leaf tip. Tertiary veins arise from the secondaries, and minor veins commonly arise from all orders of major veins, as well as from other minor veins. All of the major veins are associated with rib tissue, although the ends of the tertiaries may resemble minor veins, which are completely encircled by chlorenchymatic bundle sheaths and mesophyll cells that radiate out from the sheaths. A specialized minor vein, the fimbrial vein, occurs just inside the margin of the leaf. Most of the mesophyll cells—the so-called “Kranz mesophyll cells”—are in direct contact with the bundle sheaths, but some—the so-called “nonKranz mesophyll cells”—lack such contact. Non-Kranz mesophyll cells are especially prominent where they form a network of mostly horizontally oriented cells just above the lower epidermis. Guard cells of both the upper and lower epidermis are spatially associated with nonKranz mesophyll cells.  相似文献   

13.
独叶草叶二叉分枝脉序中网结脉和盲脉的形态学研究   总被引:13,自引:1,他引:12  
对独叶草营养叶二叉分枝脉序及其中的网结脉和盲脉的形态学研究表明:(1)网结脉中2条完全汇合的与靠近脉中完全分离的叶脉之间未发现任何形式的维管束汇合的中间类型及网结脉中具有不同程度的连接脉退化痕迹的事实表明,网结脉不可能由靠近脉产生,相反,由于网结脉中联结脉的退化而形成开放脉;(2)盲脉是通过伴随着齿退化的达齿脉的退化、网结脉中联结脉的间断、非网结脉由分枝处间断三种方式产生的;(3)越裂片脉的出现及其可以形成网结脉的现象表明独叶草营养叶可能曾具有较为复杂的脉序,这种叶脉也呈现出退化的趋势;(4)独叶草营养叶的二叉分枝脉序可能是一种退化性状,而网结脉的出现可能是这种退化过程中的残留痕迹。  相似文献   

14.
Ontogenetic studies of young sporophytes were undertaken to determine anatomical and morphological differences between a primitive (Lophosoria quadripinnata) and an advanced (Sphaeropteris elongata) tree fern. In both species the first leaf is simple, fanshaped, and possesses dichotomous venation. Later-formed leaves exhibit either a pinnate or bipinnate pattern of laminar dissection. As the sporophyte matures, the stelar pattern changes from a protostele to an amphiphloic siphonostele, and finally to a dictyostele in Sphaeropteris. Medullation of the protostele occurs either prior to or after the formation of the first leaf trace in both species. Differentiation of xylem in the shoot is acropetal and the appearance of mature protoxylem occurs closer to the apical meristem in Sphaeropteris. The nodal pattern varies within each species with a no gap 1-trace pattern characteristic for the first two or three leaves, depending upon the taxon. In Lophosoria subsequent leaves possess a unilacunar 1-trace nodal pattern, whereas a complete nodal series (1 gap 1-trace to 1 gap 6-trace) occurs in Sphaeropteris. Fusiform leaf gaps are noted in both species. The shoot apical meristem is dominated by a single apical cell, with an organized apical cell first found in P2. Stem, root, and petiole anatomy are discussed.  相似文献   

15.
The paper deals with the complex leaves of three species of the aquatic genus Marathrum (M. minutiflorum, M. rubrum and M. schiedeanum). It is shown that they represent pinnately ramified ensiform leaves. The dissection of the leaves contributes to surface enlargement and thus to improvement of their hydrophylls function. The ensiform structure is confirmed by the transverse position of the sheathing lower leaf zone and the subsequent intercalary elongational growth proceeding in the median plane towards the abaxial side of the leaf (upper leaf zone). The petiole continues into the rachis-like central axis of the blade from which pinnate-like segments diverge at the adaxial and abaxial edge of the ensiform blade. The segments give rise to tufts of clavate enations that end in long filaments. The filigree pinnately segmented ensiform leaves of Marathrum are interpreted as a further development of the fan-shaped and irregularly lobate ensiform leaves occurring in Mourera and Apinagia. Pinnately ramified ensiform leaves obviously evolved in convergence to the common type of pinnate leaves found in angiosperms.  相似文献   

16.
The ontogeny of the major venation in the lamina of Populus deltoides Bartr. leaves was investigated in relation to the development of original procambial bundles, subsidiary bundles, and their derivatives. Serial sections and clearings were used to show that the midrib region is a composite structure consisting of several independent vascular bundles, each of which eventually diverges into the lamina to become a secondary vein. The sequence of events in the ontogeny of major secondary veins is: (1) an original procambial strand develops acropetally and becomes the precursor of the first vascular bundle of the midrib region of the lamina, (2) ground tissue at the forefront of acropetally developing subsidiary procambial bundles differentiates in a wavelike continuum; meristematic regions precede the acropetally developing procambial bundles, (3) discrete subsidiary bundles differentiate in the meristematic regions as they advance acropetally, (4) subsidiary bundles diverge obliquely in the lamina margin giving rise to the secondary veins in a basipetal fashion, and (5) subsequent differentiation and maturation of the secondary veins occurs within the lamina. The original procambial bundles and first-formed subsidiary bundles become the secondary veins of the uppermost portions of the lamina, the next-formed subsidiary bundles become the secondary veins of the middle portions of the lamina, and the last-formed subsidiary bundles become the secondary veins of the lowermost portion of the lamina.  相似文献   

17.
The leaf and stem of the potato plant (Solanum tuberosum L. cv. Russet Burbank) were studied by light microscopy to determine their morphology and vasculature; scanning electron microscopy provided supplemental information on the leaf's morphology. The morphology of the basal leaves of the potato shoot is quite variable, ranging from simple to pinnately compound. The upper leaves of the shoot are more uniform, being odd pinnate with three major pairs of lateral leaflets and a number of folioles. The primary vascular system of the stem is comprised of six bundles, three large and three small ones. The three large bundles form a highly interconnected system through a repeated series of branchings and arch-producing mergers. Two of the three large bundles give rise to short, lateral leaf traces at each node. Each of the small bundles in the stem is actually a median leaf trace which extends three internodes before diverging into a leaf. The three leaf traces enter the petiole through a single gap; thus the nodel anatomy is three-trace unilacunar. Upon entering the petiole, each of the laterals splits into an upper and a lower lateral. Whereas the upper laterals diverge entirely into the first pair of leaflets, the lower laterals feed all of the lateral leaflets through a series of bifurcations. Prior to their entering the terminal leaflet, the lower laterals converge on the median bundle to form a single vascular crescent which progresses acropetally into the terminal leaflet as the midvein, or primary vein. In the midrib, portions of the midvein diverge outward and continue as secondaries to the margin on either side of the lamina. Near the tip of the terminal leaflet, the midvein consists of a single vascular bundle which is a continuation of the median bundle. Six to seven orders of veins occur in the terminal leaflet.  相似文献   

18.
Comparative studies of the nodal and vascular anatomy in the Cyatheaceae are discussed as they relate to the taxonomy and phylogeny of the family. There is in the Cyatheaceae (excluding Metaxya and Lophosoria) a basic nodal pattern consisting of four major phases of leaf trace separations. Abaxial traces arise from the leaf gap margins, and the last abaxial traces from each side of the gap are larger and undergo numerous divisions. Distally adaxial traces separate from the gap margins, and the last adaxial traces are usually larger and undergo multiple divisions. In addition, medullary bundles frequently become petiole strands of the adaxial arc in the petiole. Rarely, cortical bundles form petiole strands in the abaxial arc in the petiole. Leaf gaps of the squamate genera of the Cyatheaceae are fusiform and possess prominent lateral constrictions which result from medullary bundle fusions and the separation of leaf traces. A characteristic petiole pattern is found in all members of the Cyatheaceae. There is an increase in the complexity of the petiole vascular tissue which results in a gradation from the undivided strand in Metaxya, to the three-parted petiole pattern in Lophosoria, and finally to the much-dissected petiole vascular tissue in the advanced genera. Nodal and vascular anatomy data basically support Tryon's phyletic scheme for the family. The Sphaeropteris-Alsophila-Nephelea line shows certain tendencies toward increased complexity of nodal and vascular anatomy, whereas the Trichipteris-Cyathea-Cnemidaria line shows the same anatomical and morphological characters in a direction of increased simplification or reduction.  相似文献   

19.
本文研究了连香树科(Cercidiphyllaceae)叶的宏观结构,首次报道连香树齿腺体显微结构及晶体类型,并对叶柄维管束的变化作了进一步研究。通过与近缘科的比较,我们认为连香树科的系统演化处于孤立地位,和金缕梅科有较近的亲缘关系,与木兰科较为疏远。  相似文献   

20.
A comprehensive study of the nodal and leaf anatomy of Bonnetiaceae was completed in order to provide evidence for evaluation in relation to systematics. Nodal anatomy is trilacunar, three-trace or unilacunar, one-trace. Basic leaf anatomical features of the family include: complete or incomplete medullated vascular cylinder in petiole; paracytic mature stomata with encircling ridges; large mucilaginous cells in the adaxial surface of mesophyll; periclinal divisions in upper surface layers; and discrete patches of phloem within the vascular bundles. Especially noteworthy is the presence in some genera of foliar vascular bundles enveloped by a sheath composed of two concentric regions, i.e., an inner region consisting of multiple layers of fibers and an outer specialized endodermis composed of thin-walled cells with Casparian strips. Leaves are variable with respect to lamina and cuticle thickness, relative amount and number of palisade and spongy layers, venation of lamina, and the presence or absence of sclereids and crystals in the mesophyll. A major feature in the evolution of Bonnetiaceae is development of a highly divergent, essentially parallel, leaf venation that is superficially similar to that of some monocotyledons and apparently unique among dicotyledons. Foliar anatomy provides important characters for the recognition of subgroups within Bonnetiaceae and is consistent with the segregation of Bonnetiaceae from Theaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号