首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
细菌细胞含有细胞壁,人和动物的细胞没有细胞壁,做对细菌细胞壁,的生物合成有专一抑制作用的抗生素,对人与动物细胞基本上不起作用,以致于不显示或较少显示毒性。这种高效低毒的抗生素是人们追求的目标,长期以来为研究人员所重视。现在,大家已经了解细菌细胞壁的结构与部分细胞壁合成抑制剂的作用机制,在此基础上,人们设计了一些细胞壁抑制剂筛选模型,以便寻找新的细菌细胞壁合成抑制剂。现将  相似文献   

2.
肽聚糖、磷壁酸、脂多糖是细菌细胞壁的主要结构物质,了解这些物质的合成过程,对于阐明细胞壁与细胞膜之间的关系,阐明某些抗生素的作用机制等具有重要意义。本文简要介绍上述几种物质生物合成过程以及某些抗生素对肽聚糖合成的影响。  相似文献   

3.
过去曾经认为青霉素等抗生素破坏细菌细胞壁的合成 ,导致细胞壁薄弱 ,最终爆裂而引起细菌死亡。近十年来 ,生物学家才知道青霉素激活了细菌自身的自溶酶 ,该酶溶解了细菌的细胞壁。实际上 ,几乎所有的抗生素都间接地引起细菌这种自杀行为 :自溶酶反应。美国的一个研究组鉴定了一种细菌的这种自杀程序。她们研究了引起脑脊膜炎等疾病的常见病原菌Streptococcuspneumoniae菌株。用青霉素、万古霉素等抗生素处理时 ,该菌停止生长而非死亡 ,细菌的这种特性称为耐受性。研究者发现该耐受性细菌在一个传感器蛋白VncR的…  相似文献   

4.
细菌中普遍存在L/D型氨基酸,与L-氨基酸(L-AAs)不同,D-氨基酸(D-AAs)不参与蛋白质合成,而与细胞壁肽聚糖的合成有关,直接影响细菌细胞壁的形状、数量和强度。D-AAs在细菌表征、药物抑菌性、靶标确定等方面具有重要的作用。目前,外源添加D-AAs参与肽聚糖合成的机制已有一些研究进展,其荧光衍生物已应用于细菌可视化,特异性探测细胞壁形成/重塑、细菌生长和细胞形态。但D-AAs如何影响细菌生长及其抗逆性的机制尚未研究清楚。对D-AAs的研究现状进行综述,重点介绍D-AAs在细菌中的生物合成机制和参与细胞壁合成的机制、非典型DAAs对细菌的调控以及在细菌可视化中的应用,并对D-AAs未来研究方向进行了展望。  相似文献   

5.
细菌对喹诺酮类抗菌药的分子耐药机制   总被引:7,自引:0,他引:7  
喹诺酮类是目前临床上应用较多的抗菌药。然而,喹诺酮类耐药菌时有出现。就细菌对喹诺酮类抗菌药主要耐药机制从分子水平作一综述。(1)一般认为,喹诺酮类抗菌药通过结合细菌Ⅱ类拓扑异构酶,干扰细菌复制,而发挥抑菌作用。Ⅱ类拓扑异构酶变异时,细菌可逃脱喹诺酮类的抑菌作用。高水平的耐药由DNA回旋酶和拓扑异构酶Ⅳ同时发生变异造成。(2)细菌细胞壁是抗菌药进入的屏障。细胞壁组分脂多糖和孔蛋白的改变,可减少喹诺酮类的通透。(3)有些细菌可利用“外排泵”主动将喹诺酮类排出,降低喹诺酮类在菌体内的积累浓度。(4)细菌的其他一些代谢因素也可影响喹诺酮类的抑菌作用。  相似文献   

6.
细菌细胞壁的结构   总被引:2,自引:0,他引:2  
了解细菌细胞壁的结构,对于研究细菌的分类、遗传、及噬菌体的感染,对于解释抗生素和溶菌酶等对细菌的作用,以及革兰氏染色的机理等,都是很重要的。本文拟对细菌细胞壁的结构作一简述。  相似文献   

7.
细菌L型是细菌因变异而产生的细胞壁缺陷型细菌,促使细胞壁缺陷的因素颇多。但许多细菌在抗生素治疗过程中,尤其是对细菌壁起作用的抗生素,能诱导它们转变成细菌L型的现象,已逐渐被人们所认识。某院儿科收治一过敏性紫癫,紫癫肾病患儿在使用抗生素后诱导院内L型细...  相似文献   

8.
抗生素对微生物作用的研究   总被引:10,自引:0,他引:10  
抗生素能干扰微生物细胞新陈代谢的某个或几个环节 (包括代谢物或酶系统 ) ,使它不能以正常的代谢途径维持和延续生命活动。分别从抗生素抑制细胞壁合成、影响细胞膜功能、抑制蛋白质合成、影响能量代谢、干扰核酸合成 5方面综述了抗生素对微生物的作用。  相似文献   

9.
肽聚糖的生物合成及其调控机制研究进展   总被引:1,自引:0,他引:1  
肽聚糖(peptidoglycan)是细菌细胞壁的重要组成部分,对于维持细胞形态、大小及存活至关重要;同时,肽聚糖是众多常用抗生素的作用靶点。在细菌的正常生长过程中,肽聚糖不断地合成和水解,为了保证细胞壁的完整性,肽聚糖生物合成过程必然受到严谨的时空调控。肽聚糖的生物合成及其调控机制是微生物学中重要的基础研究之一,近年来国内外研究团队在该领域取得了突破性研究进展。基于此,本文综述了肽聚糖的从头合成和循环再利用过程,并重点阐述了肽聚糖合成关键酶——肽聚糖合酶及其调控机制的最新研究进展。最后,本文对未来需要加强研究的方向进行了展望。  相似文献   

10.
在细菌生长过程中,细胞壁起到维持细胞形状和完整性,抵抗内部膨胀压的作用。细胞壁的合成、分裂、再生、循环再利用等与细菌自身生长繁殖和应对环境压力息息相关。目前,细胞壁生长机理,细菌如何调控细胞壁生长及如何与其他细胞过程相协调的机制尚未研究清楚。细胞壁调控机制的解析对了解细菌细胞壁功能、确定药物的作用方式和发展新一代的治疗方法至关重要。对细菌调控细胞壁生长机制的国外研究进展进行了概述,重点阐述了支架蛋白、转录因子、非编码小RNA及蛋白相互作用调控细胞壁的合成、细胞分裂、压力响应的机制,总结了细胞壁调控机制在抗菌药物研发中的应用,并对未来的研究方向进行了展望。  相似文献   

11.
细菌耐药性的不断上升对现有阶段的抗生素类药物提出了一个严峻的挑战,同时也掀起了针对于新靶标的抗菌药物的研究。氨酰tRNA合成酶(aaRS)催化特定氨基酸连接到相应的tRNA分子上,在蛋白质的合成过程中起着必不可少的作用。氨酰tRNA合成酶的抑制会导致蛋白质合成的停止,扰乱细菌和真菌的生长,因此氨酰tRNA合成酶是一类潜在的抗感染靶标。本文分别综述了天然产物及其衍生的aaRS抑制剂,底物和反应中间体模拟物,通过合成和通过虚拟筛选得到的aaRS抑制剂作为新型抗细菌和抗真菌药物的研究进展,并对aaRS的靶标特点、分类和催化机制作一简要介绍。  相似文献   

12.
SatomiT. 等(日本)报道,他们在筛选微生物细胞壁生物合成抑制剂时,发现了两个新的抗真菌抗生素NeopeptinsA和B。这两个抗生素都是链霉菌K—710菌株产生的。虽然A和B在理化性质上有差异,但在生物学特性上都能抑制植物致病真菌,而且这种抑制作用还伴有真菌菌丝体的膨胀。盆栽试验结果指出,Neopeptins对黄瓜白粉病有疗效。30ppm对值株的保护效果达90%以上。对细胞壁聚糖合成有抑制作用,能抑制酿酒酵母的β—1,3—葡  相似文献   

13.
纪芳  陈博磊  梁勇 《微生物学报》2018,58(12):2078-2086
除最小的甘氨酸外,所有的氨基酸(amino acid,AA)都有手性,以D-氨基酸(DAA)或L-氨基酸(LAA)形式存在。DAA广泛存在于各类生物中,尤其是细菌。DAA虽没有参与蛋白质合成,但DAA尤其是非典型DAA在细菌生理中具有很多特殊功能。在结构性能方面,DAA是细菌细胞壁肽聚糖的重要组分,并参与组成某些非核糖体合成途径产生的生物多肽,少数细菌能产生含有D-Glu的γ-聚谷氨酸。对细胞个体而言,DAA能调节细菌表面电荷和自溶素活性,抑制细菌芽胞萌发,调节稳定期细胞壁的重塑及调节病原菌的毒力等。对细菌群落而言,DAA对生物膜的解聚和细菌生态也具有调控作用。此外,某些DAA还能直接作为营养支持某些细菌的生长,而有的DAA则具有抑菌作用。本文主要综述了DAA在细菌生理过程中发挥多项功能的研究进展。  相似文献   

14.
用电子显微镜和光学显微镜观察了小麦类根瘤,以探讨小麦类根瘤中胞间细菌的运动及其对细胞壁的影响.结果表明:(1)小麦类根瘤由薄壁细胞、分生细胞和侵染细胞组成,它们中有许多胞间隙,其中一些还含有大量细菌;它们的胞间层常常彼此分离,形成间隙,间隙中有时也有细菌存在;(2)小麦类根瘤中没有侵入线,细菌运动主要在胞间进行;具有细菌的胞间隙和胞间层大小不等、形状各异,其细胞壁还常常出现不同程度的变化,变化的大小一般与它们中的细菌有关,且随细菌数量的增加而增加.  相似文献   

15.
青霉素结合蛋白及其介导细菌耐药的研究进展   总被引:2,自引:0,他引:2  
青霉素结合蛋白(PBPs)是一类广泛存在于细菌细胞膜表面的膜蛋白,是β-内酰胺类抗生素的主要作用靶位。在细菌合成细胞壁肽聚糖的过程中,PBPs主要发挥糖基转移酶、肽基转移酶和D-丙氨酰-D-丙氨酸羧肽酶(D,D-羧肽酶)活性,是细菌生长繁殖中不可或缺的酶。不同种类细菌所含PBPs各不相同,其结构的改变、数量的增多、与抗生素亲和力的下降以及产生新的青霉素结合蛋白是直接导致细菌对β-内酰胺类抗生素产生耐药性的重要原因。随着各类抗菌药物在临床上的广泛应用,细菌对抗菌药物的耐药问题日趋严重,其耐药水平也越来越高。因此,近年来全球围绕PBPs开展的研究工作越来越多。本文对PBPs的分类、结构和功能、与细菌耐药性的关系及检测方法的最新研究进展进行综述,并对未来可能的研究方向进行展望。  相似文献   

16.
抗生素是由微生物在生长发育后期产生的次级代谢产物,具有杀死或抑制细菌生长的能力,因此被广泛应用于细菌感染的临床治疗。在长期的进化过程中,细菌采取多种方式应对环境中抗生素的威胁。除了广为人知的抗生素耐药性(resistance)之外,细菌还能对抗生素产生耐受性(tolerance)和持留性(persistence),严重影响抗生素的临床疗效。鸟苷四磷酸(guanosine tetraphosphate, ppGpp)和鸟苷五磷酸(guanosine pentaphosphate, pppGpp) (本文统称ppGpp)是细菌应对营养饥饿等不利环境时产生的"报警"信号分子,其能够在全局水平调控基因的表达,使细菌适应不利的环境。越来越多的研究表明,ppGpp与细菌应对抗生素胁迫密切相关。基于此,本文综述了细菌中ppGpp的合成与水解及其作用机制,并重点阐述了ppGpp介导抗生素胁迫应答的分子机制,以期为新型抗生素的开发提供新思路。  相似文献   

17.
噬菌体裂解酶应用研究进展   总被引:1,自引:1,他引:0  
近年来,随着抗生素的滥用,导致多重耐药性菌株出现的频率加快。因细菌感染导致死亡的人数逐年增多,人类健康面临巨大挑战,因此研制新型抗菌药物刻不容缓。噬菌体裂解酶因其高效的杀菌能力及高度的宿主专一性而成为新一代抗菌制剂的候选之一。其是一种细胞壁水解酶,在双链DNA噬菌体复制后期被合成,通过水解细胞壁肽聚糖上的化学键,从而裂解细菌细胞壁,释放出子代噬菌体。本文系统地介绍了噬菌体裂解酶的研究进展,为相关裂解酶抗菌药物的研发做出有益探索。  相似文献   

18.
抗细菌药物默诺霉素的化学生物学研究进展   总被引:1,自引:0,他引:1  
默诺霉素(moenomycins)家族类化合物主要是由链霉菌产生,属于磷酸糖脂类抗生素。该类化合物通过与细菌细胞壁肽聚糖糖基转移酶(peptidoglycan transferase,PGT)的活性位点结合,可以抑制众多革兰氏阳性细菌细胞壁的合成,具有很强的生物活性和重要的应用开发潜力。本文针对默诺霉素的化学结构、生物活性机制、抗性机制、生物合成研究途径、外排机制和新结构创制等化学生物学方面进行了系统综述,并对默诺霉素化学生物学研究现状以及可能存在的问题进行了总结,旨在为高活性磷酸糖脂类临床药物的研究与开发提供借鉴。  相似文献   

19.
抗生素的广泛使用引起了耐药细菌的大量出现和传播,严重危害公共健康。细菌裂解酶作为一类天然存在的细菌细胞壁水解酶,对普通细菌及其耐药菌株具有高效、高特异性(选择性)的抗菌性能,被视为抗生素的一种潜在替代品。将细菌裂解酶的底物识别特异性或者选择性杀菌特性与某些材料结合,通过酶固定化的方法,可形成具有特定功能的生物材料,以选择性地识别或杀灭特定细菌。本文中,笔者综述基于细菌裂解酶的功能性生物材料的开发及其在食品、医药卫生等行业中的应用。  相似文献   

20.
乳酸菌素是在乳酸茵代谢过程中通过核糖体合成机制产生并胞外分泌到环境中的一类对革兰阳性茵(尤其是亲缘性较近的细菌)具有抑制作用的杀菌蛋白或多肽,大多对热稳定,能够通过在细胞膜上形成孔道或抑制细胞壁合成来达到溶茵目的.乳酸菌素作为一种无毒副作用的天然食品防腐剂,比抗生素更具优点的抑菌素以及无残留的饲料添加剂,有着广阔的市场前景,逐步得到科研重视.对乳酸菌素产生茵的选育,生物合成及影响因素,应用方向和措施、趋势方面进行综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号