首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. We have identified a novel virulence deficient mutant (BXO1691) of X. oryzae pv. oryzae that has a Tn5 insertion in an open reading frame (phyA; putative phytase A) encoding a 373-amino acid (aa) protein containing a 28-aa predicted signal peptide. Extracellular protein profiles revealed that a 38-kDa band is absent in phyA mutants as compared with phyA+ strains. A BLAST search with phyA and its deduced polypeptide sequence indicated significant similarity with conserved hypothetical proteins in Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and limited homology to secreted phytases of Bacillus species. Homology modeling with a Bacillus phytase as the template suggests that the PhyA protein has a similar six-bladed beta-propeller architecture and exhibits conservation of certain critical active site residues. Phytases are enzymes that are involved in degradation of phytic acid (inositol hexaphosphate), a stored form of phosphate in plants. The phyA mutants exhibit a growth deficiency in media containing phytic acid as a sole phosphate source. Exogenous phosphate supplementation promotes migration of phyA X. oryzae pv. oryzae mutants in rice leaves. These results suggest that the virulence deficiency of phyA mutants is, at least in part, due to inability to use host phytic acid as a source of phosphate. phyA-like genes have not been previously reported to be involved in the virulence of any plant pathogenic bacterium.  相似文献   

3.
The hrp gene cluster of Xanthomonas spp. contains genes for the assembly and function of a type III secretion system (TTSS). The hrpF genes reside in a region between hpaB and the right end of the hrp cluster. The region of the hrpF gene of Xanthomonas oryzae pv. oryzae is bounded by two IS elements and also contains a homolog of hpaF of X. campestris pv. vesicatoria and two newly identified genes, hpa3 and hpa4. A comparison of the hrp gene clusters of different species of Xanthomonas revealed that the hrpF region is a constant yet more variable peninsula of the hrp pathogenicity island. Mutations in hpaF, hpa3, and hpa4 had no effect on virulence, whereas hrpF mutants were severely reduced in virulence on susceptible rice cultivars. The hrpF genes from X. campestris pv. vesicatoria, X. campestris pv. campestris, and X. axonopodis pv. citri each were capable of restoring virulence to the hrpF mutant of X. oryzae pv. oryzae. Correspondingly, none of the Xanthomonas pathovars with hrpF from X. oryzae pv. oryzae elicited a hypersensitive reaction in their respective hosts. Therefore, no evidence was found for hrpF as a host-specialization factor. In contrast to the loss of Bs3-dependent reactions by hrpF mutants of X. campestris pv. vesicatoria, hrpF mutants of X. oryzae pv. oryzae with either avrXa10 or avrXa7 elicited hypersensitive reactions in rice cultivars with the corresponding R genes. A double hrpFxoo-hpa1 mutant also elicited an Xa10-dependent resistance reaction. Thus, loss of hrpF, hpal, or both may reduce delivery or effectiveness of type III effectors. However, the mutations did not completely prevent the delivery of effectors from X. oryzae pv. oryzae into the host cells.  相似文献   

4.
5.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. We have identified a Tn5-induced virulence-deficient mutant (BXO1704) of X. oryzae pv. oryzae. The BXO1704 mutant exhibited growth deficiency in minimal medium but was proficient in inducing a hypersensitive response in a non-host tomato plant. Sequence analysis of the chromosomal DNA flanking the Tn5 insertion indicated that the Tn5 insertion is in the purH gene, which is highly homologous to purH genes of other closely related plant pathogenic bacteria Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris. Purine supplementation reversed the growth deficiency of BXO1704 in minimal medium. These results suggest that the virulence deficiency of BXO1704 may be due to the inability to use sufficient purine in the host.  相似文献   

6.
Mutations in the seven clustered rpf genes cause downregulated synthesis of extracellular enzymes and reduced virulence of Xanthomonas campestris pathovar campestris ( Xcc ). The phenotype of mutants in one of the genes, rpfF , can be restored by a diffusible extracellular factor (DSF) produced by all Xcc strains tested, apart from rpfF and rpfB mutants. DSF accumulates in early stationary phase (when synthesis of enzymes is maximal), but levels decline subsequently. Addition of DSF to exponentially-growing wild-type bacteria does not cause precocious enzyme synthesis. rpfB and rpfF are expressed throughout growth, but the rate increases in early stationary phase. RpfB is predicted to be a long-chain fatty acyl CoA ligase, and RpfF shows some relatedness to enoyl CoA hydratases. The properties of DSF suggest that it may be a fatty-acid derivative, and certain lipid preparations possess DSF activity at higher concentrations. These include lipid extracts and acid-hydrolysed lipopolysaccharide and lipid A from Xcc , and purified dodecanoic and hydroxydodecanoic acid. DSF production is confined to certain xanthomonads. We propose a model for the DSF system, which represents a novel mechanism for regulating virulence factor synthesis in response to physiological or environmental changes.  相似文献   

7.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. A mutation was isolated in the ferric uptake regulator (fur) gene of X. oryzae pv. oryzae and it was shown to result in the production of siderophores in a constitutive manner. The fur mutant is hypersensitive to the metallo-antibiotic streptonigrin, a phenotype that is indicative of intracellular free-iron overload, and also exhibits a slow growth phenotype on rich medium. The fur mutant is virulence deficient, hypersensitive to hydrogen peroxide, and exhibits reduced catalase activity. Exogenous supplementation with ascorbic acid (an antioxidant) rescues the growth deficiency of the fur mutant in rice leaves. The virulence deficiency of the X. oryzae pv. oryzae fur mutant is proposed to be due, at least in part, to an impaired ability to cope with the oxidative stress conditions that are encountered during infection.  相似文献   

8.
水稻条斑病菌胞外多糖相关基因的鉴定   总被引:1,自引:0,他引:1  
周丹  邹丽芳  邹华松  陈功友 《微生物学报》2011,51(10):1334-1341
摘要:【目的】前期研究中从Tn5 转座子插入的水稻条斑病菌突变体库中获得了17 个胞外多糖改变的突变体。【方法】本文对这些突变体的Tn5 插入位点和基因类型进行了鉴定。【结果】结果显示,胞外多糖减少的11 个突变体中多数为Tn5 插入在已知的gum、xan 和wxoc 基因簇上,Xoryp_4217、Xoryp_2488 和Xoryp_0918为未知的与胞外多糖产生有关的基因,属首次报道;6 个胞外多糖增多的突变体中,fimO、pilY 和xopQ 与胞外多糖产生有关,但在水稻条斑病菌中未见报道;Xoryp2392、Xoryp_4221 和Xoryp_3511 为首次鉴定,其中Xoryp_3511 仅在水稻黄单胞菌中存在。毒性测定结果显示,胞外多糖减少的突变体在水稻上的毒性变弱,而胞外多糖增加的突变体在水稻上的毒性没有显著变化。【结论】这些结果为进一步分析水稻条斑病菌胞外多糖代谢途径以及与水稻的互作关系奠定了基础。  相似文献   

9.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. Spontaneous mutants which are deficient for virulence and extracellular polysaccharide (Eps) production accumulate in large numbers in stationary-phase cultures of this bacterium, a phenomenon which we have called stationary-phase variation. A clone (pSD1) carrying the Eps biosynthetic gene (gum) cluster of X. oryzae pv. oryzae restored Eps production and virulence to several spv (for stationary-phase variation) mutants. Data from localized recombination analysis, Southern hybridization, PCR amplification, and sequence analysis showed that the mutations are due to insertion of either one of two novel endogenous insertion sequence (IS) elements, namely, ISXo1 and ISXo2, into gumM, the last gene of the gum gene cluster. The results of Southern analysis indicate the presence of multiple copies of both IS elements in the genome of X. oryzae pv. oryzae. These results demonstrate the role of IS elements in stationary-phase variation in X. oryzae pv. oryzae.  相似文献   

10.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a serious disease of rice. A virulence- and xylanase-deficient mutant of Xoo was isolated following ethyl methane sulfonate (EMS) mutagenesis. A cosmid clone that restored virulence and xylanase secretion was obtained from a genomic library by functional complementation. Transposon mutagenesis and marker exchange studies revealed genes on the cloned DNA that were required for xylanase production and virulence. Sequence analysis with transposon-specific primers revealed that these genes were homologues of xps F and xps D, which encode components of a protein secretion system in Xanthomonas campestris pv. campestris. Enzyme assays showed xylanase accumulation in the periplasmic space and cytoplasm of the xps F mutant and the complementing clone restored transport to the extracellular space.  相似文献   

11.
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. We demonstrated earlier that the type II secretion system (T2S) is important for virulence of X. oryzae pv. oryzae and that several proteins, including a xylanase, are secreted through this system. In this study, the xynB gene encoding for the secreted xylanase was cloned as a 6.9-kb EcoRI fragment (pRR7) that also included a paralog called xynA. As in X. oryzae pv. oryzae, xynA and xynB are adjacent to each other in X. axonopodis pv. citri, whereas only the xynA homolog is present in X. campestris pv. campestris. Mutations in xynB but not xynA affect secreted xylanase activity. Western blot analysis using anti-XynB antibodies on exudates from infected rice leaves indicated that this xylanase is expressed during in planta growth. Another T2S-secreted protein was identified to be a lipase/esterase (LipA) based on the sequence tags obtained by tandem mass spectrometry analysis and biochemical assays. Mutations in either xynB or lipA partially affected virulence. However, a lipA-xynB double mutant was significantly reduced for virulence, and the pRR7 clone containing an intact xynB gene could complement the virulence-deficient phenotype of the lipA-xynB mutant. Our results suggest that there is functional redundancy among the T2S secreted proteins of X. oryzae pv. oryzae in promoting virulence on rice.  相似文献   

12.
Three exopolysaccharide (EPS)- and virulence-deficient mutants of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, were isolated by Tn5 mutagenesis. These insertions are not located within the gum gene cluster. A 40-kb cosmid clone that restored EPS production and virulence to all three mutants was isolated, and the three transposon insertions were localized to contiguous 4.3- and 3.5-kb EcoRI fragments that are included in this clone. Sequence data indicate that two of the transposon insertions are in genes that encode a putative sugar nucleotide epimerase and a putative glycosyl transferase, respectively; the third insertion is located between the glycosyl transferase gene and a novel open reading frame (ORF). A 5.5-kb genomic region in which these three ORFs are located has a G+C content of 5-1.7%, quite different from the G+C content of approximately 65.0% that is typical of X. oryzae pv. oryzae. Homologues of this locus have not yet been reported in any other xanthomonad.  相似文献   

13.
Virulence of the black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is regulated by cell-cell signalling involving the diffusible signal factor DSF. Synthesis and perception of DSF require products of genes within the rpf cluster (for regulation of pathogenicity factors). RpfF directs DSF synthesis whereas RpfC and RpfG are involved in DSF perception. Here we have examined the role of the rpf/DSF system in biofilm formation in minimal medium using confocal laser-scanning microscopy of GFP-labelled bacteria. Wild-type Xcc formed microcolonies that developed into a structured biofilm. In contrast, an rpfF mutant (DSF-minus) and an rpfC mutant (DSF overproducer) formed only unstructured arrangements of bacteria. A gumB mutant, defective in xanthan biosynthesis, was also unable to develop the typical wild-type biofilm. Mixed cultures of gumB and rpfF mutants formed a typical biofilm in vitro. In contrast, in mixed cultures the rpfC mutant prevented the formation of the structured biofilm by the wild-type and did not restore wild-type biofilm phenotypes to gumB or rpfF mutants. These effects on structured biofilm formation were correlated with growth and disease development by Xcc strains in Nicotiana benthamiana leaves. These findings suggest that DSF signalling is finely balanced during both biofilm formation and virulence.  相似文献   

14.
15.
The rpf gene cluster of Xanthomonas campestris pv. campestris is involved in the co-ordinate positive regulation of the production of extracellular enzymes and the extracellular polysaccharide xanthan. Several of the rpf genes are involved in a regulatory system involving the small diffusible molecule DSF (for diffusible signal factor). Synthesis of DSF requires RpfF, and a two-component sensory transduction system involving RpfC has been implicated in the perception of the signal and signal transduction. Here we show that mutations in both rpfF and rpfC lead to reductions in the levels of cyclic glucan. The levels of cyclic glucan synthetase in membrane preparations from rpfF and rpfC mutants were, however, unaltered from the wild-type. Similar alterations in the level of cyclic glucan without changes in cyclic glucan synthetase activity were seen when wild-type bacteria were exposed to osmotic stress. These results extend the range of cellular functions subject to regulation by the rpf genes and DSF system.  相似文献   

16.
BACKGROUND: Rice plant diseases play a major role as biological constraints on production. One of such rice disease is bacterial leaf blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo). The diffusible signal factor (DSF) synthesized by Xoo has a major role in virulence to rice plant. The DSF synthase RpfF protein, which is related to crotonase superfamily is responsible for the maintaining concentration of DSF. DSF-dependent quorum sensing (QS) system adopts protein- protein interaction mechanism to auto regulates the production of DSF. The antibacterial activity of pesticides against Xoo has not yet been completely understood. Three dimensional structure of RpfF protein was predicted using homology modeling method by MODELLER 9V9 software, SWISS MODEL and GENO3D online tools and structures were validated by Ramachandran plot, TM-Score and RMSD. 3D structure of RpfF (accession number AAL06345) was predicted using DSF synthase of Xanthomonas campestris pv. campestris (Xcc) (PDB ID: 3M6M) as a template. The stereo chemical check reveals the structure developed from the modeller was the best one and the potential ligand binding sites were identified by CASTp Server. The predicted RpfF model provides insight into its structure, active sites and aid in the development of novel inhibitors to control bacterial leaf blight in rice plant. DSF synthase RpfF protein could be used as a novel target to control infection.  相似文献   

17.
The synthesis of extracellular enzymes and extracellular polysaccharide (EPS) in Xanthomonas campestris pv. campestris (Xcc) is regulated by a cluster of genes called rpf (for regulation of pathogenicity factors). Two of the genes, rpfF and rpfB, have previously been implicated in the synthesis of a diffusible regulatory molecule, DSF. Here, we describe a screen of transposon insertion mutants of Xcc that identified two DSF-overproducing strains. In each mutant, the gene disrupted is rpfC, which encodes a hybrid two-component regulatory protein in which the sensor and regulator domains are fused and which contains an additional C-terminal phosphorelay (HPt) domain. We show that rpfC is in an operon with rpfH and rpfG. The predicted protein RpfG has a regulatory input domain attached to a specialized version of an HD domain, previously suggested to function in signal transduction. The predicted protein RpfH is structurally related to the sensory input domain of RpfC. We show that RpfC and RpfG act positively to regulate the synthesis of extracellular enzymes and EPS, but that RpfC acts negatively to regulate the synthesis of DSF. We propose that RpfGHC is a signal transduction system that couples the synthesis of pathogenicity factors to sensing of environmental signals that may include DSF itself.  相似文献   

18.
Thirty-five Xanthomonas campestris pv. oryzae, fourteen X. campestris pv. oryzicola strains and six 'brown blotch' pathogens of rice, all of different geographical origin, were studied by numerical analysis of 133 phenotype features and gel electrophoregrams of soluble proteins, %G + C determinations and DNA:rRNA hybridizations. The following conclusions were drawn. (i) The Xanthomonas campestris pathovars oryzae and oryzicola display clearly distinct protein patterns on polyacrylamide gels and can be differentiated from each other by four phenotype tests. (ii) Both pathovars are indeed members of Xanthomonas which belongs to a separate rRNA branch of the second rRNA superfamily together with the rRNA branches of Pseudomonas fluorescens, Marinomonas, Azotobacter, Azomonas and Frateuria. (iii) 'Brown blotch' strains are considerably different from X. campestris pv. oryzae and oryzicola. They are not members of the genus Xanthomonas, but are more related to the generically misnamed. Flavobacterium capsulatum, Pseudomonas paucimobilis, Flavobacterium devorans and 'Pseudomonas azotocolligans' belonging in the fourth rRNA superfamily. (iv) No correlation was found between the virulence, pathogenic groups or geographical distribution of X. campestris pv. oryzae or oryzicola strains and any phenotypic or protein electrophoretic property or clustering.  相似文献   

19.
Xanthomonas oryzae pv. oryzae is the causal agent of rice bacterial blight disease. Numerous genes critical for virulence have been identified. This article reviews current knowledge on the molecular mechanisms of X. oryzae pv. oryzae virulence.  相似文献   

20.
The molecular basis of pathogenesis by Xanthomonas oryzae pv. oryzae has been partly elucidated by the identification of a gene, hrpXo, required for bacterial blight on rice. A mutation in hrpXo results in the loss of pathogenicity on rice and the loss of hypersensitivity on nonhosts such as Datura stramonium and radishes. Pathogenicity and its ability to cause the hypersensitive reaction is restored by complementing the mutant with the heterologous hrpXc gene derived from X. campestris pv. campestris. Conversely, hrpXo complements nonpathogenic mutants of X. campestris pv. campestris and X. campetstris pv, armoraciae. Mutants bearing the heterologous hrpX gene are restored in their abilities to cause diseases typical of their chromosomal background and not the hypersensitive reaction on their respective hosts. The hrpXo and hrpXc genes are therefore functionally equivalent, and this functional equivalence extends into X. campestris pv. armoraciae and possibly into other X. campestris pathovars, since this gene is highly conserved among eight other pathovars tested. Sequence analyses of hrpXo revealed an open reading frame of 1,452 bp with a coding capacity for a protein of 52.3 kDa. The protein contains a consensus domain for possible protein myristoylation whose consequence may result in a loss of recognition by host defense and surveillance systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号