首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Pestalotia leaf spot, caused by the fungus Pestalotiopsis longisetula Guba, has become the major disease affecting strawberry production in Brazil. Strawberry seedlings with 4–5 leaves were inoculated with a conidial suspension of P. longisetula (2 × 105 conidia/ml), and leaf samples were collected at 48, 72, 96 and 144 h after inoculation (hai) for observation in the scanning electron microscope. Conidia germinated within 48 hai. At 72 hai, conidia had formed very long germ tubes over the epidermal cells without any evidence of appressorial formation nor direct penetration. At 96 hai, fungal hyphae grew inter‐ and intracellularly in the lacunous parenchyma and also through tracheary elements. Pycnidia were first observed on the leaf surface at 96 hai. At 144 hai, conidia of P. longisetula were first liberated from the pycnidia. This study adds new information to better understand of the infection process of P. longisetula that may help in developing more effective disease control strategies.  相似文献   

2.
  • Environmental cadmium (Cd) sources have increased in mangrove sediments in recent decades, inducing cellular damage to many plants. Avicennia schaueriana is abundant in mangrove sites and has been subject to Cd contamination. The possible effects of Cd toxicity and the structural and physiological disturbances to this plant were studied. Can this plant express early cellular tolerance mechanisms to such metal contamination?
  • Seedlings of A. schaueriana were collected from sites of their natural occurrence, placed in plastic pots containing nutrient solution for 60 days, and subsequently exposed to increasing Cd concentrations for 5 days under experimental conditions. The anatomical, ultrastructural and physiological changes induced by Cd were analysed.
  • Cd accumulated mainly in the root system and in pneumatophores, stems and leaves, induced differential accumulation of mineral nutrients, but did not induce necrosis or changes in leaf anatomy. However, there was a decrease in starch grains and an increase in deposited electron‐dense material in the cortex and vascular bundles. Cd induced both increases in calcium (Ca) content in shoots and Ca oxalate crystal precipitation in leaf mesophyll and was detected in crystals and in the secretion of salt glands.
  • Our observations and experimental results provide evidence of Cd tolerance in A. schaueriana. As a new feature, despite the clear cellular physiological disorders, this plant is able to eliminate Cd through leaf salt glands and immobilise it in Ca crystals, representing fast mechanisms for Cd exclusion and complexation in leaves in heavy metal coastal polluted marine ecosystems.
  相似文献   

3.
Calonectria (= Cylindrocladium), an internationally recognised fungal ascomycete genus, causes significant diseases on numerous crops of forestry, horticultural and agricultural interest. Eucalyptus, an economically important multipurpose plantation forestry species, is severely threatened by Calonectria leaf blight (CLB) disease in Brazil, Australia, China, Indonesia, Vietnam and India. The disease causes serious mortality in the nurseries/plantations and yield losses due to defoliation. Since the first report of Calonectria in 1867, efforts have been made for the identification and characterisation of this vastly diverse hypocrealean genus. Currently, the genus Calonectria harbours 131 species grouped within 11 species complexes, and broadly categorised into the Prolate and Sphaero-Naviculate groups. Globally, 35 Calonectria species distributed in seven species complexes cause CLB of Eucalyptus, out of which 29 belong to the Prolate group and five to the Sphaero-Naviculate group. Likewise, 28 Calonectria species distributed in eight species complexes have been reported in association with infected Eucalyptus tissues and plantation soil, however, their pathogenicity remains to be determined. Given the importance of CLB of Eucalyptus, this review compiles its global impact, shifts in taxonomy and nomenclature of Calonectria, pathogenesis mechanism, defence response of Eucalyptus upon infection and disease management. This study identifies and provides direction to crucial areas of future research on CLB which is severely impacting Eucalyptus plantations globally.  相似文献   

4.
张树珍  樊卫国 《西北植物学报》2022,42(10):1728-1738
为了探究喀斯特地区野生毛葡萄(Vitis quinquangularis Rehd.)器官的钙含量、组分及其分布特征,揭示野生毛葡萄的需钙特性及其对高钙土壤的适应机制。该研究以贵州喀斯特地区野生毛葡萄为材料,取样测定了40个样地的野生毛葡萄立地土壤的pH值、交换性钙含量及其根、茎、叶中钙和镁及其钙组分含量,分析土壤交换性钙含量与不同钙组分间的关系,并观察野生毛葡萄叶片表面及根、茎、叶中的钙晶体。结果表明:(1)喀斯特地区野生毛葡萄总钙含量在器官中的分布表现为叶>根>茎,其分布特征与喜钙植物类似。(2)野生毛葡萄根、茎、叶中主要钙组分含量由高到低依次基本为草酸钙、果胶酸钙、水溶性钙、磷酸钙+碳酸钙、硝酸钙+氯化钙、硅酸钙(茎中稍有不同),根、茎、叶中草酸钙占所有钙组分总量和总钙含量的比例均最高,其次是果胶酸钙。(3)各样地野生毛葡萄叶片中Ca+Mg的含量范围在1.30%~4.07%之间,绝大多数在3.0%~4.0%范围内,表现出喜钙植物叶中高Ca+Mg含量的特性。(4)在喀斯特地区的野生毛葡萄体内,多种钙组分含量与土壤中的钙含量呈显著或极显著的正相关关系。(5)扫描电镜观察发现,野生毛葡萄叶片和根中储存有大量的草酸钙晶体,叶片中的草酸钙可通过气孔排出体外。研究发现,喀斯特地区野生毛葡萄属于喜钙植物,对喀斯特高钙环境的适应性强,叶片中钙的富集量大,有大量的草酸钙和果胶酸钙储存于体内,这种储钙特性和气孔的排钙行为对野生毛葡萄适应高钙环境具有重要作用。  相似文献   

5.
This study investigated the effect of potassium (K) on sheath blight (Rhizoctonia solani) development on rice plants from cultivars BR‐IRGA 409 and Labelle grown in nutrient solution containing 0, 50 and 100 mm of K. Sheath blight progress on inoculated sheaths was evaluated by measuring the relative lesion length at 48, 72, 96 and 120 h after inoculation (hai). Data were used to calculate the area under relative lesion length progress curve (AURLLPC). The foliar K concentration on leaf sheaths tissue increased by 61.48 and 116.05% to cultivars BR‐IRGA 409 and Labelle, respectively, as the K rates increased from 0 to 100 mm . A linear model best described the relationship between the AURLLPC and the K rates. The AURLLPC decreased by 29.2 and 21.3% for cultivars BR‐IRGA 409 and Labelle, respectively, as the K rates in the nutrient solution increased. It can be concluded that high K concentration on leaf sheaths tissue was important to decrease sheath blight symptoms on rice leaf sheaths.  相似文献   

6.
The aim of this study was to determine the litterfall production and macronutrient (Ca, K, Mg, N, and P) deposition through leaf litter in four sites with different types of vegetation. Site one (Bosque Escuela) was located at 1600 m a.s.l. in a pine forest mixed with deciduous trees, second site (Crucitas at 550 m a.s.l.) in the ecotone of a Quercus spp. forest and the Tamaulipan thornscrub and third and fourth sites (Campus at 350 m a.s.l. and Cascajoso at 300 m a.s.l., respectively) were in the Tamaulipan thornscrub. Litter constituents (leaves, reproductive structures, twigs, and miscellaneous residues) were collected at 15-day intervals from December 21, 2006, throughout December 20, 2007. Collections were carried out in ten litter traps (1.0 × 1.0 m) randomly situated at each site of approximately 2,500 m2. Total annual litterfall deposition was 4407, 7397, 6304, and 6527 kg ha−1 y−1 for Bosque Escuela, Crucitas, Campus and Cascajoso, respectively. Of total annual litter production, leaves were higher varying from 74 (Bosque Escuela) to 86% (Cascajoso) followed by twigs from 4 (Cascajoso) to 14% (Crucitas), reproductive structures from 6 (Bosque Escuela) to 10% (Crucitas), and miscellaneous litterfall from <1 (Campus) to 12% (Bosque Escuela). The Ca annual deposition was significantly higher in Cascajoso (232.7 kg ha−1 y−1), followed by Campus (182.3), Crucitas (130.5) and Bosque Escuela (30.3). The K (37.5, 32.5, 24.8, 7.2, respectively), Mg (22.6, 17.7, 13.7, 4.5, respectively) followed the same pattern as Ca. However, N was higher in Campus (85.8) followed by Crucitas (85.1), Cascajoso (68.3), and Bosque Escuela (18.3). The P was higher in Campus and Crucitas (4.0) followed by Cascajoso (3.4) and Bosque Escuela (1.4). On an annual basis for all sites, the order of nutrient deposition through leaf litter was Ca > N> K > Mg > P, whereas on site basis of total nutrient deposition (Ca + N + K + Mg + P), the order was Cascajoso > Campus > Crucitas > Bosque Escuela. Ca, K, Mg, N, and P nutrient use efficiency values in leaf litter were higher in Bosque Escuela, while lower figures were acquired in Cascajoso and Crucitas sites. It seems that the highest litterfall deposition was found in the ecotone of a Quercus spp. forest and the Tamaulipan thornscrub; however, the Tamaulipan thornscrub vegetation alone had better leaf litter nutrient return.  相似文献   

7.
Abstract Climatic conditions should not hinder nutrient release from decomposing leaf‐litter (mineralization) in the humid tropics, even though many tropical forests experience drought lasting from several weeks to months. We used a dry‐season irrigation experiment to examine the effect of seasonal drought on nutrient concentrations in leaf‐fall and in decomposing leaf‐litter. In the experiment, soil in two 2.25‐ha plots of old‐growth lowland moist forest on Barro Colorado Island, Republic of Panama, was watered to maintain soil water potential at or above field capacity throughout the 4‐month dry season. Wet‐season leaf‐fall had greater concentrations of nitrogen (N, 13.5 mg g?1) and calcium (Ca, 15.6 mg g?1) and lower concentrations of sulfur (S, 2.51 mg g?1) and potassium (K, 3.03 mg g?1) than dry‐season leaf‐fall (N = 11.6 mg g?1, Ca = 13.6 mg g?1, S = 2.98 mg g?1, K = 5.70 mg g?1). Irrigation did not affect nutrient concentrations or nutrient return from forest trees to the forest floor annually (N = 18 g m?2, phosphorus (P) = 1.06 g m?2, S = 3.5 g m?2, Ca = 18.9 g m?2, magnesium = 6.5 g m?2, K = 5.7 g m?2). Nutrient mineralization rates were much greater during the wet season than the dry season, except for K, which did not vary seasonally. Nutrient residence times in forest‐floor material were longer in control plots than in irrigated plots, with values approximately equal to that for organic matter (210 in control plots vs 160 in irrigated plots). Calcium had the longest residence time. Forest‐floor material collected at the transition between seasons and incubated with or without leaching in the laboratory did not display large pulses in nutrient availability. Rather, microorganisms immobilized nutrients primarily during the wet season, unlike observations in tropical forests with longer dry seasons. Large amounts of P moved among different pools in forest‐floor material, apparently mediated by microorganisms. Arylsulfatase and phosphatase enzymes, which mineralize organically bound nutrients, had high activity throughout the dry season. Low soil moisture levels do not hinder nutrient cycling in this moist lowland forest.  相似文献   

8.
Grasses and forbs compete heavily with young tree seedlings for available resources, greatly reducing tree seedling establishment success. Soil nutrient enrichment associated with agricultural intensification can increase the growth of both herbaceous and woody lifeforms growing in isolation, but may change the balance of competitive advantage when growing together. The effects of nitrogen and phosphorus enrichment on pasture biomass and competition with two Australian grassy woodland trees (Eucalyptus albens and Eucalyptus microcarpa) was investigated in a field plot trial. Soil nutrients increased pasture biomass, but had no measurable effect on tree growth in our experiment. Competition from pasture species, even at low levels, led to high tree seedling mortality and greatly reduced tree seedling growth compared with pasture-free plots. However, when pasture-free plots were excluded from the analysis, tree seedling leaf area was not strongly correlated with herbaceous biomass. Tree seedling establishment was severely restricted even at the lowest levels of pasture biomass. We conclude that increased soil fertility resulted in a competitive advantage to the pasture, and does not improve tree seedling establishment when grown either with or without exotic herbaceous pasture (grassy understorey) species.  相似文献   

9.
Mineral nutrient economy in competing species of Sphagnum mosses   总被引:1,自引:0,他引:1  
Bog vegetation, which is dominated by Sphagnum mosses, depends exclusively on aerial deposition of mineral nutrients. We studied how the main mineral nutrients are distributed between intracellular and extracellular exchangeable fractions and along the vertical physiological gradient of shoot age in seven Sphagnum species occupying contrasting bog microhabitats. While the Sphagnum exchangeable cation content decreased generally in the order Ca2+ ≥ K+, Na+, Mg2+ > Al3+ > NH4 +, intracellular element content decreased in the order N > K > Na, Mg, P, Ca, Al. Calcium occurred mainly in the exchangeable form while Mg, Na and particularly K, Al and N occurred inside cells. Hummock species with a higher cation exchange capacity (CEC) accumulated more exchangeable Ca2+, while the hollow species with a lower CEC accumulated more exchangeable Na+, particularly in dead shoot segments. Intracellular N and P, but not metallic elements, were consistently lower in dead shoot segments, indicating the possibility of N and P reutilization from senescing segments. The greatest variation in tissue nutrient content and distribution was between species from contrasting microhabitats. The greatest variation within microhabitats was between the dissimilar species S. angustifolium and S. magellanicum. The latter species had the intracellular N content about 40% lower than other species, including even this species when grown alone. This indicates unequal competition for N, which can lead to outcompeting of S. magellanicum from mixed patches. We assume that efficient cation exchange enables Sphagnum vegetation to retain immediately the cationic nutrients from rainwater. This may represent an important mechanism of temporal extension of mineral nutrient availability to subsequent slow intracellular nutrient uptake.  相似文献   

10.
Effects of three compound growth regulators formulated with hypersensitivity protein, spermidine, salicylic acid and DA-6 (diethyl aminoethanol hexanoate) were tested on Xinjiang Jun Jujube. The doses of compound growth regulators were named as A (Hypersensitivity protein + spermidine + salicylic acid at the rate of 30 mg/L, 0.1 mmol/L and 0.25 mmol/L, respectively), B (Hypersensitive protein + spermidine + DA-6 at the rate of 30 mg/L, 0.1 mmol/L and 30 mg/L, respectively) and C (Spermidine + salicylic acid + DA-6 at the rate of 0.1 mmol/L, 0.25 mmol/L and 30 mg/L, respectively) versus a control group CK (contained only water). Fruit anatomical structures were compared after spraying. The results indicated that after spraying, the thickness of the upper and lower epidermal cells and the stratum corneum were increased. However, the upper epidermal stratum corneum became significantly thicker than the lower epidermis. Spraying with A improved the thickness of upper and lower epidermal cells, stratum corneum, the central vein and mesophyll. The cumulative effects of all these changes in leaf and fruit anatomical structures provided the resistance of the experimental fruit plant to stress. While the B and C regulators had inhibitory effects. So, the results obtained after spraying A category were beneficial to improve the stress resistance of the fruits. The length and cell area of pericarp and sarcocarp cells in the treatment groups were not changed significantly. But the length, number of sarcocarp cells and number of gaps were lower than those in the CK. This study can provide new measures for improving plant resistance in jujube production.  相似文献   

11.

Salinity is a major environmental stress that limits plant production and portraits a critical challenge to food security in the world. In this research, the impacts of plant growth–promoting bacteria (Pseudomonas RS-198 and Azospirillum brasilense RS-SP7) and foliar application of plant hormones (salicylic acid 1 mM and jasmonic acid 0.5 mM) on alleviating the harmful effects of salt stress in rapeseed plants (Brassica napus cv. okapi) were examined under greenhouse condition. Salt stress diminished rapeseed biomass, leaf area, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and chlorophyll content, while it increased sodium content, endogenous salicylic and jasmonic acids, osmolyte production, H2O2 and O2•− generations, TBARS content, and antioxidant enzyme activities. Plant growth, nutrient content, leaf expansion, osmolyte production, and antioxidant enzyme activities were increased, but oxidative and osmotic stress indicators were decreased by bacteria inoculation + salicylic acid under salt stress. Antioxidant enzyme activities were amplified by jasmonic acid treatments under salt stress, although rapeseed growth was not generally affected by jasmonic acid. Bacterial + hormonal treatments were superior to individual treatments in reducing detrimental effects of salt stress. The best treatment in rectifying rapeseed growth under salt stress was combination of Pseudomonas and salicylic acid. This combination attenuated destructive salinity properties and subsequently amended rapeseed growth via enhancing endogenous salicylic acid content and some essential nutrients such as potassium, phosphorus, and magnesium.

  相似文献   

12.
Non-nitrogenous mineral nutrients may be an important constraint on forest productivity and belowground processes in many ecosystems. We measured responses of soil CO2 efflux (FCO2), fine root production, and root-free incubation soil respiration to experimental additions of non-nitrogenous mineral nutrients (phosphorus (P) + potassium (K) fertilizer, dolomitic lime, and P + K plus lime) over 2 years in a sugar-maple-dominated forest in central Ontario; this region receives some of the highest anthropogenic nitrogen (N) inputs in North America, and evidence exists for co-limitation by P, magnesium (Mg), and calcium (Ca) of the growth of dominant trees. Soil amendments, in particular P + K fertilization, reduced FCO2, fine root production and microbial respiration, with decreases in FCO2 of 28–51% in fertilized compared to control plots. Partial regression analyses indicated that soil available P had a negative effect on FCO2, fine root production, and microbial respiration, but detected no significant effects of N, Ca, or Mg. Path analysis further suggested that available P reduced both fine root production and microbial respiration, and that these effects were largely responsible for reduced FCO2. There was also a residual direct negative relationship between available P and FCO2, which may represent reduced metabolic activity of roots. The study indicates that P is a critical nutrient dominating belowground processes in an N-saturated forest ecosystem, and suggests that additions of P may enhance C sink strength in managed forests in part through reductions in soil CO2 efflux.  相似文献   

13.
This study aimed to elucidate the infection process of Botrytis cinerea on eucalypt leaves. Tests were conducted to evaluate the influence of leaf side (adaxial or abaxial), leaf age and luminosity on conidial germination, appressorium formation and grey mould (GM) severity. The adaxial and abaxial surfaces of detached eucalypt leaves were inoculated with a conidial suspension of B. cinerea and kept under constant light or dark. Subsequently, the adaxial surface of young and old leaves was inoculated and kept in the dark. To evaluate the percentage of conidia germination and appressorium formation, leaf samples were collected 6 hours after inoculation (hai), clarified (alcohol and chloral hydrate) and evaluated under a light microscope. The severity of GM was assessed 10 days after inoculation. For scanning electron microscopy analysis, samples were collected from 2 to 168 hai. A higher percentage of conidia germination (92%) and GM severity (21%) occurred on the adaxial surfaces of leaves kept in the dark. There was no statistical difference between the surfaces of young and old leaves for conidia germination. No appressorium was formed by B. cinerea. The GM severity on young leaves (17.3%) was 34 times higher than on old leaves (0.5%). The micrographs showed germinating conidia emitting 1–4 germ tubes in samples at 4 hai. The fungus penetration occurred through intact leaf surfaces, and both extra‐ and intracellular colonization of the mesophyll cells by the hyphae of the pathogen were observed at 120 hai. Sporulation occurred on the adaxial and abaxial surfaces (macronematous conidiophores) and below the epidermis (micronematous conidiophores).  相似文献   

14.
Addition of nutrients to sediments has been proposed as a means of enhancing transplantation success in seagrasses. The effects of nutrient and iron additions to natural sediments on the growth and morphology of Posidonia australis transplants were evaluated in underwater plots in two contrasting environments: a coastal embayment (Princess Royal Harbour) with sandy sediments and little riverine input, and an estuary (Oyster Harbour) with organic-rich sediments and subject to seasonal river flow from a large rural catchment. Sixty six planting units spaced 1 m apart were transplanted in situ in each location. Nitrogen (N) and phosphorus (P) were added in a randomized factorial design using slow release fertilizer granules at the start of the experiment and repeated every 4-5 months for 2 years. In a concurrent experiment, chelated iron Fe EDTA was added to modify the sediment sulphur cycle.In Oyster Harbour, the addition of N significantly increased leaf N concentrations but reduced total biomass and biomass of leaves. Addition of P significantly increased leaf P concentrations and number of living leaves per transplant, leaf area, leaf length, length of longest rhizome axis and total rhizome length. Combined N + P addition resulted in a significant increase in leaf P concentrations and leaf area per plant only. In Princess Royal Harbour, addition of N produced significant increases in leaf variables (total and leaf biomass, number of shoots and living leaves, leaf area, and leaf length) but there were no significant differences observed in below ground plant parts (rhizomes). Addition of P had no significant effects on any growth measurements. Addition of N + P combined increased number of living leaves and leaf area significantly. δ15N in mature leaf tissue were significantly more negative for N and N + P treatments at both locations.Our results indicated that N limitation was occurring in the coastal embayment, Princess Royal Harbour whereas in the more estuarine Oyster Harbour, P was limiting plant growth. Addition of FeEDTA produced equivocal results at both sites and we suggest these results are confounded by the addition of N and C in the EDTA. We caution the use of nutrient addition to transplants of slow growing seagrasses such as P. australis without a thorough understanding of the nutrient status of the system, estuarine or coastal embayment, in which they are to be transplanted.  相似文献   

15.
Hordeum maritimum (Poacea) is a facultative halophyte potentially useful for forage production in saline zones. Here, we assessed whether moderate NaCl-salinity can modify the plant response to phosphorus (P) shortage. Plants were cultivated for 55 days under low or sufficient P supply (5 or 60 μmol plant−1 week−1 KH2PO4, respectively), with or without 100 mM NaCl. When individually applied, salinity and P deficiency significantly restricted whole-plant growth, with a more marked effect of the latter stress. Plants subjected to P deficiency showed a significant increase in root growth (as length and dry weight) and root/shoot DW ratio. Enhanced root growth and elongation presumably correspond to the well-known root adaptive response to mineral deficiency. However, leaf relative water content, leaf P concentration, and leaf gas exchange parameters were significantly restricted. The interactive effects of salinity and P deficiency were not added one to another neither on whole plant biomass nor on plant nutrient uptake. Indeed, 100 mM NaCl-addition to P-deficient plants significantly restored the plant growth and improved CO2 assimilation rate, root growth, K+/Na+ ratio and leaf proline and soluble sugar concentrations. It also significantly enhanced leaf total antioxidant capacity and leaf anthocyanin concentration. This was associated with significantly lower leaf osmotic potential, leaf Na+ and malondialdehyde (MDA) concentration. Taken together, these results suggest that mild salinity may mitigate the adverse effects of phosphorus deficiency on H. maritimum by notably improving the plant photosynthetic activity, the osmotic adjustment capacity, the selective absorption of K+ over Na+ and antioxidant defence.  相似文献   

16.
以种植于干热河谷区的赤桉(Eucalyptus camaldulensis Dehnh.)幼龄林、中龄林和成熟林为研究对象,分析了赤桉鲜叶和凋落叶中养分(包括N、P、K、Ca、Mg和Na)的含量和化学计量比,并计算各养分的再吸收率;在此基础上,对鲜叶和凋落叶中各养分的含量与再吸收率进行线性回归分析.结果表明:成熟林赤桉鲜叶和凋落叶的有机碳、全氮、全磷、全钾和全钠含量总体上高于幼龄林,而全钙和全镁含量则低于幼龄林;且鲜叶中的全氮、全磷、全钾、全钠和全镁含量总体上高于凋落叶,而有机碳和全钙含量则低于凋落叶.成熟林赤桉鲜叶和凋落叶的C:N比、鲜叶的N:P比和N:K比以及凋落叶的K:P比和Ca:Mg比均低于幼龄林,但其鲜叶的K:P比和Ca:Mg比及凋落叶的N:P比和N:K比则高于幼龄林;且不同林龄鲜叶的C:N比、K:P比和Ca:Mg比均低于凋落叶.各林龄赤桉叶的Ca再吸收率及幼龄林和中龄林叶的Na再吸收率均为负值,而其余养分的再吸收率均为正值;随林龄增长,N、K和Mg的再吸收率先升高后降低,而P、Ca和Na的再吸收率却先降低后升高;总体上看,赤桉叶中各养分的再吸收率从高到低依次为P、N、K、Mg、Na、Ca.线性回归分析结果表明:赤桉鲜叶的全钾和全钠含量分别与K和Na再吸收率呈极显著正相关(P<001),全钙含量与Ca再吸收率呈显著正相关(P<005);而凋落叶的全氮含量与N再吸收率呈极显著负相关,全镁含量与Mg再吸收率呈显著负相关.综合分析结果显示:林龄对赤桉叶的养分含量和再吸收率有明显影响,其保存养分的能力随林龄增长呈现先增强后减弱的趋势.  相似文献   

17.
Abstract The effect of potassium (0,50, 100 and 200 mg/pot) was studied on growth characteristics and nitrate reductase activity in maize (Zea mays) seedlings during water stress and subsequent recovery. In irrigated plants K+ increased the rate of leaf area expansion, leading to increased leaf area per plant. Increased leaf area was associated with decreased chlorophyll content. Water stress (–15 bars) enhanced the stomatal resistance of leaves which was further accentuated by K+ application. Nitrate reductase activity rose in irrigated plants 24 h after K+ application. Subsequently, as water stress developed, K+ helped to maintain higher NR activity for the first two days. However, K+ had no effect on half life of NR in light or darkness. During recovery from stress K+ aided to maintain the higher leaf expansion rate, the chlorophyll content and the stomatal resistance. The results above are discussed in relation to the ability of K+ to maintain better growth under water stress.  相似文献   

18.
Plant variation in nutrient concentrations encompasses two major axes. The first is connected to nitrogen (N) and phosphorus (P), reflects growth rate and has been designated as the leaf economics spectrum (LES) while the second follows the gradient in calcium (Ca) and magnesium (Mg) and mirrors cell structural differences. Here, we tested in grasslands whether the sum Ca + Mg concentrations is a better indicator of digestibility than LES constituents. Structural equation modelling revealed that the total effect size of N (0.30) on digestibility was much lower than that of Ca + Mg (0.58). The N effect originated predominantly from sampling date (biomass ageing), while the Ca + Mg effect largely from phylogenetic composition (proportion of monocots). Thus, plant variation in partially substitutable divalent cations seems to play a significant role in biomass digestion by ruminants. This finding contests, together with litter decomposition studies, the prominent role of the LES for understanding both fundamental ecological processes.  相似文献   

19.
Phytophthora root and crown rot (Phytophthora cryptogea) on gerbera is difficult to manage because most gerbera cultivars are susceptible to P. cryptogea. This study was conducted in order to determine the in vivo (pot experiment) efficacy of some fungicides and biofungicides. In pot experiments, fungicides were applied 7 days after inoculation with P. cryptogea, while biofungicide was applied 7 days before inoculation. In this study, soil drenches of five fungicides were tested. “Ametoctradin+dimethomorph (100 ml/day),” “mandipropamid+difenoconazole (60 ml/day),” “propamocarb+fosetyl‐Al (200 ml/day),” “mancozeb+metalaxyl‐M (250 g/day)” and “azoxystrobin+difenoconazole (100 ml/day)” active substances were used. Similarly, one biofungicide Bacillus amyloliquefaciens syn. MBI 600 (50 g/100 L) was applied by soil drenching. Efficacy of treatments was assessed according to the percentage of the root system which was visibly rotten at the end of the experiment. Root and crown rot severity was rated on a scale of 0 = 0% root system necrotic, 1 = 1%‐25% necrotic, 2 = 26%‐50% necrotic, 3 = 51%‐75% necrotic and 4 = 76%‐100% necrotic from 12 to 21 days. In this experiment, “azoxystrobin 200 g/L + difenoconazole 125 g/L” exhibited the highest efficacy against P. cryptogea with a ratio of 43.75%. The other fungicides and biofungicides ametoctradin 300 g/L + dimethomorph 225 g/L, mandipropamid 250 g/L + difenoconazole 250 g/L, propamocarb 530 g/L + fosety‐Al 310 g/L, mancozeb 64%+metalaxyl‐M 4% and Bacillus amyloliquefaciens syn. MBI 600 11% were ineffective. Importance should be given to management strategies of P. cryptogea of and more experiments should be carried out for a better understanding of the use of registered fungicides and biofungicides.  相似文献   

20.
We examined growth of Eucalyptus microcarpa seedlings in soil collected from four sites in southeastern Australia, in which retired pasture land has been revegetated with mixed plantings of Eucalyptus and Acacia species. Revegetation of farm land in southeastern Australia is an area of major investment. The focus of the study was to examine the influence of soil biota on seedling growth and its possible interaction with soil enrichment from a legume (Acacia) and decomposition rates. We used a soil freezing treatment (−80°C for 3 days) to retard the soil biota, with the expectation that invertebrates in particular would be killed. Soil freezing did not cause a nutrient pulse, but did reduce the level of ammonium in soil. Nitrate levels increased with time in pots, regardless of the soil treatment. Decomposition rates measured using cellulose substrate were significantly reduced by the freeze treatment, but only for approximately 90 days. Eucalyptus microcarpa seedlings grown in freeze-treated soil were approximately 40% smaller (total biomass), had marginally lower LAR (leaf area ratio), and significantly lower LMA (leaf mass per area). Low LMA indicates that leaves are either thinner in cross-section or less dense. We hypothesise that both the poor growth of seedlings and production of less robust leaves are consequences of reduced availability of soil nutrients due to the diminished soil biota after freeze treatment. Litter under Acacia was richer in nitrogen than litter under Eucalyptus but there was no difference in nitrogen content of soil, and consequently no soil source effects on plant growth or decomposition. We suggest that variation in the soil biota has the potential to greatly enhance or hinder the success of revegetation on retired agricultural land, but enrichment of soil by decomposition of nitrogen rich litter in these sites requires longer than the 8–15 years since they were revegetated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号