首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Two species of cold-temperate algae from the North Atlantic Ocean,Polyides rotundus andFurcellaria lumbricalis, were tested for growth and survival over a temperature range of −5 to 30 °C. In comparisons of eastern and western isolates, bothF. lumbricalis, a North Atlantic endemic, andP. rotundus, a species having related populations in the North Pacific, were quite homogeneous.F. lumbricalis tolerated −5 to 25°C and grew well from 0 to 25°C, with optimal growth at 10–15 °C.P. rotundus tolerated −5 to 27°C, grew well from 5 to 25°C, and had a broad optimal range of 10–25°C. Both species tolerated 3 months in darkness at 0°C. In neither case could any geographic boundary be explained in terms of lethal seasonal temperatures, suggesting that these species are restricted in distribution by strict thermal and/or daylength requirements for reproduction. The hypothesis that northern species are more homogeneous than southern taxa in terms of thermal tolerance was supported. A second hypothesis, that disjunct cold-temperate species should be more variable than pan-Arctic species, was not supported.  相似文献   

3.
Mainly on the basis of the distribution patterns of 42 species of the recently revised genus Cladopkora (Chlorophyceae) in the north Atlantic Ocean, it appeared possible to distinguish 10 phytogeographic distribution groups of wide applicability. Experimentally determined critical temperatures limiting essential events in the life histories of 17 benthic algal species were used to infer possible phytogeographic boundaries; these appeared to fit closely the phytogeographic boundaries derived from field-distribution data. For a temperate species, at least six different boundaries can be postulated and should be checked in the northern hemisphere: (1) the ‘northern lethal boundary’ (corresponding to the lowest winter temperature which a species can survive); (2) the ‘northern growth boundary’ (corresponding to the lowest summer temperature which, over a period of several months, permits sufficient growth); (3) the ‘northern reproductive boundary’ (corresponding to the lowest summer temperature permitting reproduction over a period of several months); (4–6) the corresponding southern boundaries. Photoperiodic responses may influence the temperature responses. Many phytogeographic boundaries appear to be of a composite nature. For instance, the southern boundary of Laminaria digitata follows the European 10°C February isotherm (which corresponds to the highest winter temperature permitting fertility in the female gametophyte, i.e. to the ‘southern reproductive boundary’), and the American 19°C summer isotherm (corresponding to the ‘southern lethal boundary’). Thus, experimental evidence supports the validity of eight of the following 10 distribution groups (for distribution groups 2 and 6, such evidence could not be found): (1) the amphiatlantic tropical-to-warm temperate group, with a north-eastern extension (examples: Gracilaria foliifera and Centroceras clavulalum); (2) the amphiatlantic tropical-to-warm temperate group, with a north-western extension (example: Hypnea musciformis); (3) the amphiatlantic tropical-to-temperate group (example: Sphacelaria rigidula =furcigera); (4) the amphiatlantic temperate group: the Cladophora rupestris type (examples: Callithamnion hookeri, Dumontia contorta; Laminaria saccharina is transitional to type 10, I., digitata to types 5 and 10); (5) the amphiatlantic temperate group: the Cl. albida type (examples: Scytosiphon lomentaria, Petalonia fascia); (6) the tropical western Atlantic group; (7) the north-east American tropical-to-temperate group (example: Gracilaria tikvahiae); (8) the north-east American temperate group and the corresponding Japanese temperate group (examples: Campylaephora hypneoides and Sargassum muticum); (9) the warm-temperate Mediterranean-Atlantic group, and the corresponding warm-temperate Californian group (examples: Saccorhiza polyschides, Laminaria hyperborea, I., ockroleuca, Macrocystis pyrifera, Hedophyllum sessile); (10) the Arctic group (examples: Saccorhiza dermatodea and Sphacelaria arctica). Distribution groups 6, 9 and 10 have comparatively narrow temperature ranges with a span of 18 22°C between their lethal boundaries and of 5 12°C between their reproductive or growth boundaries. These narrow temperature ranges limit the species in these groups to the tropics; the temperate coasts on the eastern sides of the north Pacific and north Atlantic Oceans and in the southern hemisphere; and to the Arctic, respectively. The narrow temperature ranges of group 9 make the species in this group unfit for life on the western temperate coasts of the north Pacific and north Atlantic Oceans, where algae must cope with annual temperature fluctuations of more than 20°C. Conversely, algae in group 8 (containing the numerous Japanese endemic species) are characterized by wide temperature spans (e.g. 29°C between ‘lethal boundaries’, 12–19°C between ‘growth and/or reproductive boundaries’) and must be potentially capable of occupying wide latitudinal belts on temperate coasts along the east sides of the north Pacific and north Atlantic Oceans. Algae ‘escaped’ from Japan, such as Sargassum muticum, conform to this picture. Apparently Japanese algae do not have the capacity for long distance dispersal. The corresponding east American coasts (30–45 N) harbour very few endemic species, probably as a result of the adverse nature of these sediment coasts for benthic macroalgae and their functioning as a barrier to latitudinal displacements of the flora during glaciations. The remaining distribution groups (1,2,3,4,5,7) are characterized by wide temperature spans and wide distributions, often in both the Atlantic and Pacific Oceans and in both hemispheres. Six temperate species (in distribution groups 4, 5 and 9) with an amphiaequatorial distribution have similar winter-temperature maxima permitting reproduction and corresponding with winter isotherms of 15–17°C; their upper lethal temperatures are more dissimilar and correspond with summer isotherms of 20–30°C. Their amphiaequatorial distribution can be explained by assuming glacial temperature drops along east Pacific and east Atlantic equatorial coasts in narrow belts of intensified upwelling during the presumably intensified glacial circulation of the ocean gyres.  相似文献   

4.
Temperature requirements for growth, reproduction and formation of macrothalli of a day-neutral strain ofScytosiphon lomentaria from the Gulf of Thessaloniki were experimentally determined and correlated with the geographic distribution in the North Atlantic Ocean. The microthallus grew in a wider temperature interval and better at higher temperatures than did the macrothallus. Germlings acclimated to 5 or 15°C grew sufficiently (>20% of maximum rate) and developed into macrothalli at 5–25°C and 5–27°C. Macrothalli acclimated to 10 or 15°C grew sufficiently at 5–20°C. Macrothalli acclimated to 15°C survived at −1°C and reproduced at 5 to 23°C. Regardless of the acclimation temperature, germlings and macrothalli grew optimally (>80% of maximum rate) at 15–25°C and at 10–15°C. The experimental data explain only the southern distribution boundary ofScytosiphon in the North Atlantic. This boundary is composite in nature: on the European coasts it is a growth boundary, whereas on the American coasts it is a lethal one.  相似文献   

5.
We examined the temperature tolerance of microscopic phases from geographically disjunct isolates of eight species or closely related, putatively conspecific taxa of temperate brown algae with disjunct distributions. Maximum within-taxon differences were small and ranged from 1.6° to 4.3° C. Desmarestia aculeata and Sphaerotrichia divaricata, both with northern hemisphere amphioceanic distributions, showed little or no significant intraspecific variation between the mean upper survival limits (USL) of Atlantic and Pacific strains (δUSL ≤ 1.4°C), which would agree with a relatively recent separation of the respective populations. Among the plants with bipolar distributions, there was likewise very little difference (δUSL 0–1.1°C) between northern and southern hemisphere strains in Striaria attenuata and in the species pair Desmarestia viridis/D. willii. In Desmarestia ligulata, and in the species pairs Desmarestia firma/D. munda, Dictyosiphon foeniculaceus/D. hirsutus, and Scytothamnus australis/Scytothamnus sp., significant differences occurred, which indicate longer divergence times. δUSL in these cases ranged from 1.7° to 2.7°C, without overlap between strains from the northern and southern hemispheres. All species that passed the equator during cooler epochs had a USL of 26–27°C, at least in some geographical isolates. The NE Asian kelp Undaria pinnatifida, which passed the equator in recent times, had a USL of 29.6°C. We hypothesize that the mechanism of spreading in the amphipolar species studied was migration of vegetative microthalli. The more unlikely alternative hypothesis of continuous populations through the tropics during a cooler epoch would imply a drop in seawater temperatures to approximately 20° C in summer and 15° C in winter, which is not supported by paleoclimatic evidence.  相似文献   

6.
The temperature responses for growth and survival have been experimentally tested for 6 species of the green algal genusCladophora (Chlorophyceae; Cladophorales) (all isolated from Roscoff, Brittany, France, one also from Connecticut, USA), selected from 4 distribution groups, in order to determine which phase in the annual temperature regime might prevent the spread of a species beyond its present latitudinal range on the N. Atlantic coasts. For five species geographic limits could be specifically defined as due to a growth limit in the growing season or to a lethal limit in the adverse season. These species were: (1)C. coelothrix (Amphiatlantic tropical to warm temperate), with a northern boundary on the European coasts formed by a summer growth limit near the 12°C August isotherm. On the American coasts sea temperatures should allow its occurrence further north. (2)C. vagabunda (Amphiatlantic tropical to temperate), with a northern boundary formed by a summer growth limit near the 15°C August isotherm on both sides of the Atlantic. (3)C. dalmatica, as forC. vagabunda. (4)C. hutchinsiae (Mediterranean-Atlantic warm temperate), with a northern boundary formed by a summer growth limit near the 12°C August isotherm, and possibly also a winter lethal limit near the 6°C February isotherm; and a southern boundary formed by a southern lethal limit near the 26°C August isotherm. It is absent from the warm temperate American coast because its lethal limits, 5° and 30°C, are regularly reached there. (5) Preliminary data forC. rupestris (Amphiatlantic temperate), suggest the southeastern boundary on the African coast to be a summer lethal limit near the 26°C August isotherm; the southwestern boundary on the American coast lies on the 20°C August isotherm. For one species,C. albida, the experimental growth and survival range was wider than expected from its geographic distribution, and reasons to account for this are suggested.Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

7.
Aim We tested whether the contraction of the equatorward boundary of an intertidal organism, the blue mussel, Mytilus edulis, was due to high summer temperatures limiting mortality. Location The Atlantic coast of the United States. Methods Field transplant experiments were conducted at three locations along the US Atlantic coast. Survival and heat shock protein 70 expression were determined at biweekly intervals. Air and water temperature profiles were used to model current and historical patterns of mortality, and to determine rates of temperature change. Results High levels of mortality and expression of the inducible heat shock protein 70 were observed after multiple consecutive aerial exposures of 32 °C or greater. Since 1960, seasonal air and water temperatures have increased along the eastern US seaboard, and south of Lewes, DE (38.8° N) summer sea surface temperature increases have exceeded the upper lethal limits of this organism. Main conclusions Along the southern portion of its range, intertidal populations of M. edulis have experienced catastrophic mortality directly associated with summer high temperatures. Over the past 50 years, a geographic contraction of the southern, equatorward range edge of M. edulis has occurred, shifting the range edge approximately 350 km north of the previous limit at Cape Hatteras, NC (35.2° N).  相似文献   

8.
SUMMARY

The incubation period and percentage hatching of eggs of pigmented and unpigmented Biomphalaria glabrata at constant temperatures were investigated in the range 14 °C to 34 °C. In order to determine the influence of extreme temperatures on adult snails, specimens of the same species were exposed to 0 °C and 40 °C for selected time periods. The results indicate that sustained temperatures below 16 °C and above 32 °C are detrimental to the development and hatching of B. glabrata embryos. The optimum temperatures for incubation period and hatching differ from each other. As far as temperature is concerned, this foreign snail species should be capable of successfully colonizing the warmer parts of southern Africa.  相似文献   

9.
Temperature tolerance (1 week exposure time) was investigated in 49 species of benthic marine macroalgae and two seagrass species from San Juan Island (Washington) or Vancouver Island, British Columbia. Positive net photosynthesis was the parameter used to detect survival. Most algal species survived -1.5° C (the lowest applied temperature), and none 30° C. The most heat-tolerant, eurythermal algal species survived 28° C: these were Ahnfeltia plicata, Mastocarpus papillatus (as crustose tetrasporophyte), Endocladia muricata, and Sargassum muticum. In contrast, most representatives of the Laminariales exhibited a cold-stenothermic character: Cymathere triplicata, Pleurophycus gardneri, Hedophyllum sessile, Postelsia palmaeformis survived up to only 15° C, and Laminaria saccharina, L. groenlandica, L. setchellii to 18° C. As to the seagrass species, Zostera marina survived a temperature range of - 1.5 to 30° C and Phyllospadix scouleri a range of - 1.5 to 25° C. For many of the sublittoral species there was agreement between maximum survived temperatures in our experiments and average maxima of summer temperatures at the southern geographical limits of the species. Specimens of four species exhibited upper survival limits similar to those of conspecifics in the North Atlantic; namely, Desmarestia ‘aculeata, D. viridis, Plocamium cartilagineum, and Ahnfeltia plicata. These results favor the interpretation of upper temperature survival limits as conservative taxonomic traits.  相似文献   

10.
Temperature tolerances were determined for Caribbean isolates (total 31) of seaureds belonging to three distributional groups: 1) species confined to the tropical western Atlantic (Botryocladia spinulifera, Chamaedoris peniculum, Cladophoropsis sundanensis, Dictyopteris justii, Dictyurus occidentalis, Haloplegma duperreyi, and Heterosiphonia gibbesii); 2) amphi-Atlantic species with a (sub)tropical distribution that have their northern boundary in the eastern Atlantic at the tropical Cape Verde Islands (Bryothamnion triquetrum and Ceramium nitens) or the subtropical Canary Islands (Ceratodictyon intricatum, Coelothrix irregularis, Dictyopteris delicatula, Ernodesmis verticillata, and Lophocladia trichoclados; and 3) species with an am-phi-Atlantic tropical to warm-temperate distribution also occurring in the Mediterranean (Cladophoropsis membranacea, Digenea simplex, Microdictyon boergesenii, and Wurdemannia miniata). For some isolates, growth response curves and temperature requirements for reproduction were also determined. Growth occurred in the range (18)20–30° C with optimum growth rates at 25°–30°C, irrespective of distribution group. Reproduction generally occurred at (20)25°–30° C although there were some exceptions. Species were extremely stenothermal, with those restricted to the western Atlantic surviving a total range of only 10/13° C (between 18/20° and 30/33° C). Tolerance to high temperatures was correlated with vertical position in the iniertidal/subtidal zone rather than biogeography grouping. Species restricted to the subtidal were the least tolerant, with permanent survival at 30° C but not at 33°C. Tolerance to low temperatures was not different in subtidal and intertidal species but was significantly better in am phi-Atlantic than in western Atlantic species. In the former group, damage occurred at 15°–18° C but in the latter group at 18°-20° C. We propose that these differences in low-temperature tolerances in Caribbean populations of species from different distribution groups reflect adaptations to glacial cold-stress in the tropical eastern Atlantic and subsequent trans-Atlantic dispersal.  相似文献   

11.
The annual kelp Eckloniopsis radicosa is distributed along Japanese coasts and occurs within the area with a February isotherm ranging 15–18°C and August isotherm ranging 25–28°C. In this study, the effects of temperature on the gametophyte growth and maturation, and the young sporophyte growth of E. radicosa were examined and the results are discussed in relation to the distribution of other warm‐adapted kelp species and the potential effects of climate change. The optimal temperature ranges for growth of male and female gametophytes were 23–27°C and 20–26°C, respectively. The upper survival temperature for gametophyte growth was 31°C for males and 30°C for females, respectively. The optimal temperature range for maturation of female gametophytes was ≤23°C. The optimal temperature range for growth of young sporophytes was 14–22°C. It was clarified that E. radicosa has the most warm‐adapted characteristics for growth and maturation of gametophytes among members of the Laminariales studied so far. The natural seawater temperature ranges during the growth and maturation seasons for gametophytes of E. radicosa, as well as the growth season for young sporophytes near to the northern and southern distribution limits (Izu‐Oshima: 14.9–24.5°C, Ichiki‐kushikino: 17.1–29.6°C), agreed with the experimentally determined temperature requirements. The warm‐adapted gametophyte stage and annual lifecycle are major factors enabling survival of E. radicosa in warm waters near tropical regions along the Japanese coast.  相似文献   

12.
The effect of water temperature on growth responses of three common seagrass fish species that co‐occur as juveniles in the estuaries in Sydney (34° S) but have differing latitudinal ranges was measured: Pelates sexlineatus (subtropical to warm temperate: 27–35° S), Centropogon australis (primarily subtropical to warm temperate: 24–37° S) and Acanthaluteres spilomelanurus (warm to cool temperate: below 32° S). Replicate individuals of each species were acclimated over a 7 day period in one of three temperature treatments (control: 22° C, low: 18° C and high: 26° C) and their somatic growth was assessed within treatments over 10 days. Growth of all three species was affected by water temperature, with the highest growth of both northern species (P. sexlineatus and C. australis) at 22 and 26° C, whereas growth of the southern ranging species (A. spilomelanurus) was reduced at temperatures higher than 18° C, suggesting that predicted increase in estuarine water temperatures through climate change may change relative performance of seagrass fish assemblages.  相似文献   

13.
The lady crab (Ovalipes ocellatus) is one of the most common native species of swimming crab (Portunidae) of the Atlantic Coast of North America but most populations occur south of Cape Cod, Massachusetts. There is a disjunct population in Northumberland Strait (southern Gulf of St Lawrence), which was the focus of this study. Adult lady crabs were collected by trawling in water >4 m deep from May to October 1999 to 2005 to determine abundance, distribution, and diet. Lady crab occurred only in a small area (about 2,500 km2) in the central part of Northumberland Strait where bottom water temperature was >18°C during summer, and the substrate was mainly sand or sandy gravel. Male lady crab attained a maximum carapace width (CW) of 112 mm compared to 92 mm CW for females. The summer and autumn diet consisted mainly of infauna. The principal prey (each >5% of diet by weight) were: small bivalve molluscs (primarily Atlantic razor clam Siliqua costata and Macoma sp.; 43%), small rock crab (Cancer irroratus; 13%), polychaetes (11%), fish remains (9%), and small lady crab (9%). All stomachs collected during May (water temperature ≤10°C) were empty. There was little evidence of any difference in feeding intensity between 0700 h and 1900 h.  相似文献   

14.
Updated locality records of species of Metadiaptomus and Tropodiaptomus on the African continent confirm the generally disjunct distribution of these two taxa as recognised by Dumont (1980) in North Africa. Distributional data for southern Africa reveal little range overlap between these two genera. Apart from two south western Cape taxa, species of Metadiaptomus are largely confined to upland, higher latitude, semi-arid or arid warm subtemperate regions, while species of Tropodiaptomus generally occupy moist, lower-lying, lower latitude subtropical regions. Separation along latitudinal and/or altitudinal axes implicates temperature as a controlling factor, while separation on the precipitation axis suggests the importance of habitat permanence. Using a multiple regression equation derived for African waters to predict water temperature from latitude and altitude, it is shown that the two genera tend to separate around the 20 °C mean annual temperature isotherm. Additional factors influencing distribution (habitat permanence, water quality, competition and predation) are discussed.  相似文献   

15.
Symbiotic nitrogen (N)‐fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N‐fixation enzyme activity and physiology, comparatively little is known about how climate influences N‐fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N‐fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N‐fixing trees? We found that rhizobial N‐fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump‐shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5–10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate‐envelope approach to project how N‐fixing tree relative abundance might change in the future. The climate‐envelope projection showed that rhizobial N‐fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N‐fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N‐fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N‐fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models.  相似文献   

16.
Both climate and plant species are hypothesized to influence soil organic carbon (SOC) quality, but accurate prediction of how SOC process rates respond to global change will require an improved understanding of how SOC quality varies with mean annual temperature (MAT) and forest type. We investigated SOC quality in paired hardwood and pine stands growing in coarse textured soils located along a 22 °C gradient in MAT. To do this, we conducted 80‐day incubation experiments at 10 and 30 °C to quantify SOC decomposition rates, which we used to kinetically define SOC quality. We used these experiments to test the hypotheses that SOC quality decreases with MAT, and that SOC quality is higher under pine than hardwood tree species. We found that both SOC quantity and quality decreased with increasing MAT. During the 30 °C incubation, temperature sensitivity (Q10) values were strongly and positively related to SOC decomposition rates, indicating that substrate supply can influence temperature responsiveness of SOC decomposition rates. For a limited number of dates, Q10 was negatively related to MAT. Soil chemical properties could not explain observed patterns in soil quality. Soil pH and cation exchange capacity (CEC) both declined with increasing MAT, and soil C quality was positively related to pH but negatively related to CEC. Clay mineralogy of soils also could not explain patterns of SOC quality as complex (2 : 1), high CEC clay minerals occurred in cold climate soils while warm climate soils were dominated by simpler (1 : 1), low CEC clay minerals. While hardwood sites contained more SOC than pine sites, with differences declining with MAT, clay content was also higher in hardwood soils. In contrast, there was no difference in SOC quality between pine and hardwood soils. Overall, these findings indicate that SOC quantity and quality may both decrease in response to global warming, despite long‐term changes in soil chemistry and mineralogy that favor decomposition.  相似文献   

17.
Experimentally determined ranges of thermal tolerance and requirements for completion of the life history of some 60 seaweed species from the North Atlantic Ocean were compared with annual temperature regimes at their geographic boundaries. In all but a few species, thermal responses accounted for the location of boundaries. Distribution was restricted by: (a) lethal effects of high or low temperatures preventing survival of the hardiest life history stage (often microthalli), (b) temperature requirements for completion of the life history operating on any one process (i.e. [sexual] reproduction, formation of macrothalli or blades), (c) temperature requirements for the increase of population size (through growth or the formation of asexual propagules). Optimum growth/reproduction temperatures or lethal limits of the non-hardiest stage (often macrothalli) were irrelevant in explaining distribution. In some species, ecotypic differentiation in thermal responses over the distribution range influenced the location of geographic boundaries, but in many other species no such ecotypic differences were evident. Specific daylength requirements affected the location of boundaries only when interacting with temperature. The following types of thermal responses could be recognised, resulting in characteristic distribution patterns: (A) Species endemic to the (warm) temperate eastern Atlantic had narrow survival ranges (between ca 5 and ca 25°C) preventing occurrence in NE America. In species with isomorphic life histories without very specific temperature requirements for reproduction, northern and southern boundaries in Eur/Africa are set by lethal limits. Species with heteromorphic life histories often required high and/or low temperatures to induce reproduction in one or both life history phases which further restricted distribution. (B) Species endemic to the tropical western Atlantic also had narrow survival ranges (between ca 10 and ca 35°C). Northern boundaries are set by low, lethal winter temperatures. Thermal properties would potentially allow occurrence in the (sub) tropical eastern Atlantic, but the ocean must have formed a barrier to dispersal. No experimental evidence is so far available for tropical species with an amphi-Atlantic distribution. (C) Tropical to temperate species endemic to the western Atlantic had broad survival ranges (<0 to ca 35°C). Northern boundaries are set by low summer temperatures preventing (growth and) reproduction. Thermal properties would permit occurrence in the (sub)tropical eastern Atlantic, but along potential “stepping stones” for dispersal in the northern Atlantic (Greenland, Iceland, NW Europe) summer temperatures would be too low for growth. (D) In most amphi-Atlantic (tropical-) temperate species, northern boundaries are set by low summer temperatures preventing reproduction or the increase of population size. On European shores, species generally extended into regions with slightly lower summer temperatures than in America, probably because milder winters allow survival of a larger part of the population. (E) Amphi-Atlantic (Arctic-) temperate species survived at subzero temperatures. In species with isomorphic life histories not specifically requiring low temperatures for reproduction, southern boundaries are set by lethally high summer temperatures on both sides of the Atlantic. None of the species survived temperatures over 30°C which prevents tropical occurrence. Species with these thermal responses are characterized by distribution patterns in which southern boundaries in Eur/Africa lie further south than those in eastern N America because of cooler summers. In most species with heteromorphic life histories (or crustose and erect growth forms), low temperatures were required for formation of the macrothalli (either directly or through the induction of sexual reproduction). These species have composite southern boundaries in the north Atlantic Ocean. On American coasts, boundaries are set by lethally high summer temperatures, on European coasts by winter temperatures too high for the induction of macrothalli. Species with this type of thermal responses are characterized by distribution patterns in which the boundaries in Eur/Africa lie further north than those in eastern N America because of warmer winters. Paper presented at the XIV International Botanical Congress (Berlin, 24 July–1 August, 1987), Symposium 6-15, “Biogeography of marine benthic algae”.  相似文献   

18.
Optimum temperature and salinity conditions for viable hatch were studied for turbot (Scophthalmus maximus L.) from the North Sea. Temperatures ranging from 6 to 22°C and salinities from 5 to 35‰ were used. Optimum conditions were observed to be between 12 and 18°C at salinities between 20 and 35‰. This contrasted with corresponding data for turbot from the southern Baltic proper, according to which survival sharply decreased in temperatures below 14°C and was high in salinities of 10 to 15‰. Thus, it is concluded that Baltic and Atlantic turbot should be considered as different races.  相似文献   

19.
Little is known about variation of sex ratio, the proportion of males to females, in natural populations of seaweed, though it is a major determinant of the mating system. The observation of sexual chromosomes in kelps suggested that sex is partly genetically determined. However, it is probably not purely genetic since the sex ratio can be modified by environmental factors such as salinity or temperature. In this paper, sex ratio variation was studied in the kelp Lessonia nigrescens Bory complex, recently identified as two cryptic species occurring along the Chilean coast: one located north and the other south of the biogeographic boundary at latitude 29°–30° S. The life cycle of L. nigrescens is characterized by an alternation of microscopic haploid gametophytic individuals and large macroscopic fronds of diploid sporophytes. The sex ratio was recorded in progenies from 241 sporophytic individuals collected from 13 populations distributed along the Chilean coast in order (i) to examine the effect of an environmental gradient coupled with latitude, and (ii) to compare marginal populations to central populations of the two species. In addition, we tested the hypothesis that the sex ratios of the two cryptic species would be affected differently by temperature. First, our results demonstrate that sex ratio seems to be mainly genetically determined and temperature can significantly modify it. Populations of the northern species showed a lower frequency of males at 14°C than at 10°C, whereas populations of the southern species showed the opposite pattern. Second, both species displayed an increased variation in sex ratio at the range limits. This greater variation at the margins could be due either to differential mortality between sexes or to geographic parthenogenesis (asexual reproduction).  相似文献   

20.
Recent increases in global temperatures have affected the phenology and survival of many species of plants and animals. We investigated a case study of the effects of potential climate change on a thermally sensitive species, the loggerhead sea turtle, at a breeding location at the northerly extent of the range of regular nesting in the United States. In addition to the physical limits imposed by temperature on this ectothermic species, sea turtle primary sex ratio is determined by the temperature experienced by eggs during the middle third of incubation. We recorded sand temperatures and used historical air temperatures (ATs) at Bald Head Island, NC, to examine past and predict future sex ratios under scenarios of warming. There were no significant temporal trends in primary sex ratio evident in recent years and estimated mean annual sex ratio was 58% female. Similarly, there were no temporal trends in phenology but earlier nesting and longer nesting seasons were correlated with warmer sea surface temperature. We modelled the effects of incremental increases in mean AT of up to 7.5°C, the maximum predicted increase under modelled scenarios, which would lead to 100% female hatchling production and lethally high incubation temperatures, causing reduction in hatchling production. Populations of turtles in more southern parts of the United States are currently highly female biased and are likely to become ultra‐biased with as little as 1°C of warming and experience extreme levels of mortality if warming exceeds 3°C. The lack of a demonstrable increase in AT in North Carolina in recent decades coupled with primary sex ratios that are not highly biased means that the male offspring from North Carolina could play an increasingly important role in the future viability of the loggerhead turtle in the Western Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号