首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Models of environmental sex determination (ESD) usually assume that genetic influences on sex are polygenic, but the validity of this (or any other) form of genotype-environment interaction is virtually unknown. In the Atlantic silverside, Menidia menidia, sex is determined by an interaction between temperature and genotype and the response of sex ratio to temperature differs among populations from different latitudes. We examined the genetic basis of this pattern by measuring among family variation in the proportion of females, F/(F + M), within and among high (21°C) and low (15°C) temperatures for two populations: one from Nova Scotia (NS) where the level of ESD is low, and another from South Carolina (SC) where the level of ESD is high. In NS fish, temperature had a significant influence on sex ratio in only 1 of 23 families. The distribution of the fraction of females within temperatures for families from NS was highly heterogeneous and tended to fall into distinct classes (0.0, 0.25, 0.5, 1.0) like that expected from Mendelian segregation of a major sex factor(s). In contrast, temperature had a highly significant influence on sex ratio in all SC families examined (N = 24). Family sex ratios within temperatures were highly heterogeneous and, at least at 15°C, did not conform to simple Mendelian ratios. At 21°C, the proportion of females in most SC families was near zero and so the underlying sex tendencies of different families could not be discerned. Based on a previous study, mid-latitude fish appear to have an intermediate form of sex determination: simple Mendelian sex-ratio patterns exist and there is a moderate thermal influence on sex ratio in most but not all families. We suggest that sex determination in M. menidia is controlled by an interaction between major genetic factors, polygenic factors, and temperature and that the relative importance of each component differs with latitude. High latitude populations appear to have evolved a major sex-determining factor(s) that overrides the effect of temperature, and this factor(s) is lacking in low latitude populations.  相似文献   

2.
The control of the response of flowering to temperature plays a key role in successful range‐expansion of plants. A previous study showed that the suppression of flower‐bud formation at high temperature in Taraxacum officinale decreases genetically with latitude from north to south in Japan. The present study investigated whether similar trait variation occurs among populations of native Taraxacum species in Japan. Seedlings of T. albidum (a low‐ and mid‐latitude allopolyploid), T. japonicum (a mid‐latitude diploid) and T. venustum (a high‐latitude autopolyploid) were grown at three temperatures. Time to flower‐bud appearance increased with temperature in T. japonicum and T. venustum, but did not increase in T. albidum. Time to flower‐bud appearance did not differ significantly among the three species at 14°C, but it was shorter in T. albidum than in the other two species at 19°C and 24°C. The early appearance of buds of T. albidum was confirmed by another experiment in which plants of 18 populations from the three species and T. platycarpum (a mid‐latitude diploid) grown at 19°C were used. The results clearly indicate that high‐temperature suppression of flower‐bud formation was lower in low‐latitude species than in high‐latitude species. This interspecific variation is analogous to the intraspecific variation in T. officinale. Time to bud appearance of five populations in T. albidum was homogeneous within and between the populations. The results suggest that the five populations are monoclonal and lack the sensitivity of suppression of flower‐bud formation to high temperature.  相似文献   

3.
Sexual size dimorphism (SSD) is a common phenomenon in animals and varies widely among species and among populations within species. Much of this variation is likely due to variance in selection on females vs. males. However, environmental variables could have different effects on females vs. males, causing variation in dimorphism. In this study, we test the differential‐plasticity hypothesis, stating that sex‐differential plasticity to environmental variables generates among‐population variation in the degree of sexual dimorphism. We examined the effect of temperature (22, 25, 28, and 31 °C) on sexual dimorphism in four populations of the cockroach Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), collected at various latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31 °C) and smallest at the lowest temperature (22 °C). There is variation in the degree of SSD among populations (sex*population interaction), but differences between the sexes in their plastic responses (sex*temperature interaction) were not observed for body size. Our results indicated that sex‐differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.  相似文献   

4.
A major determinant of the geographic distribution of a species is expected to be its physiological response to changing abiotic variables over its range. The range of a species often corresponds to the geographic extent of temperature regimes the organism can physiologically tolerate. Many species have very distinct life history stages that may exhibit different responses to environmental factors. In this study we emphasized the critical role of the haploid microscopic stage (gametophyte) of the life cycle to explain the difference of edge distribution of two related kelp species. Lessonia nigrescens was recently identified as two cryptic species occurring in parapatry along the Chilean coast: one located north and the other south of a biogeographic boundary at latitude 29-30°S. Six life history traits from microscopic stages were identified and estimated under five treatments of temperature in eight locations distributed along the Chilean coast in order to (1) estimate the role of temperature in the present distribution of the two cryptic L. nigrescens species, (2) compare marginal populations to central populations of the two cryptic species. In addition, we created a periodic matrix model to estimate the population growth rate (λ) at the five temperature treatments. Differential tolerance to temperature was demonstrated between the two species, with the gametophytes of the Northern species being more tolerant to higher temperatures than gametophytes from the south. Second, the two species exhibited different life history strategies with a shorter haploid phase in the Northern species contrasted with considerable vegetative growth in the Southern species haploid stage. These results provide strong ecological evidence for the differentiation process of the two cryptic species and show local adaptation of the life cycle at the range limits of the distribution. Ecological and evolutionary implications of these findings are discussed.  相似文献   

5.
Skews in the human sex ratio at birth have captivated scientists for over a century. The accepted average human natal sex ratio is slightly male biased, at 106 males per 100 females or 51.5 per cent males. Studies conducted on a localized scale show that sex ratios deviate from this average in response to a staggering number of social, economical and physiological variables. However, these patterns often prove inconsistent when expanded to other human populations, perhaps because the nature of the influences themselves exhibit substantial cultural variation. Here, data collected from 202 countries over a decade show that latitude is a primary factor influencing the ratio of males and females produced at birth; countries at tropical latitudes produced significantly fewer boys (51.1% males) annually than those at temperate and subarctic latitudes (51.3%). This pattern remained strong despite enormous continental variation in lifestyle and socio-economic status, suggesting that latitudinal variables may act as overarching cues on which sex ratio variation in humans is based.  相似文献   

6.
The woodlouse Armadillidium vulgare is characterized by female heterogamety (ZW) and male homogamety (ZZ). However, in several populations, sex determination is influenced by cytoplasmic sex factors (endosymbiotic bacteria = F). At 20 °C these maternally transmitted bacteria reverse genetic males into functional neo-females (ZZ + F) producing highly female broods. When these neo-females were reared at 30° C, the sex ratio of their broods became male-biased. The major process involved in this heat-induced sex ratio inversion was the disappearance of bacteria in embryos in the course of their development, which allowed the young to express a phenotype that conforms with their genotype (i.e. male ZZ). No heat-sensitive stage of development was observed, but at least 35 days at 30° C seem to be necessary to induce F-degradation. The presence of F at 30° C (before its degradation) also induced mortality during vitellogenesis. Daily thermoperiods including a thermophase at 30° C had effects on F similar to that of a constant temperature of 30° C. A. vulgare can live in climates having such thermoperiods (at least during one period of the year), temperature appears to be capable of limiting the presence of F-bacteria in natural populations, and then modifying the evolution of sex-determining mechanisms in such populations.  相似文献   

7.
Coastal marine Gasterosteus aculeatus were captured from seven locations along the Pacific coast of North America, ranging across 21·8° latitude to test Jordan's rule, i.e. that vertebral number should increase with increasing latitude for related populations of fish. Vertebral number significantly increased with increasing latitude for both total and caudal vertebral number. Increasing length with latitude (sensu Bergmann's rule) was also supported, but the predictions for Jordan's rule held when controlling for standard length. Pleomerism was weakly evidenced. Gasterosteus aculeatus exhibited sexual dimorphism for Jordan's rule, with both sexes having more vertebrae at higher latitudes, but only males showing a positive association between latitude and the ratio of caudal to abdominal vertebrae. The number of dorsal‐ and anal‐fin rays and basals increased with increasing latitude, while pectoral‐fin ray number decreased. This study reinforces the association between phenotypic variation and environmental variation in marine populations of G. aculeatus.  相似文献   

8.
Aim The abundant‐centre hypothesis (ACH) is based on the assumption that physiological constraints limit populations at the edges of their distributional range, yet the geographical variation of physiological performance or life‐history traits has rarely been examined. Here we examine the applicability of the ACH in a marine system by testing whether physiological predictions are reflected in large‐scale variations of life‐history traits. Location The Chilean coast (18°–42° S), encompassing more than 2500 km along the Pacific coast of South America. Methods Five porcelain crab species (Petrolisthes granulosus, Petrolisthes laevigatus, Petrolisthes tuberculatus, Petrolisthes violaceus and Allopetrolisthes angulosus) were sampled on intertidal boulder beaches at 13 sampling sites. For each species and site we evaluated: (1) relative abundance (density), (2) maximum size, (3) size at maturity, (4) sex ratio, (5) proportion of ovigerous females, and (6) presence of recruits. The shape of the spatial distribution of each trait was evaluated statistically against the prediction of four hypothetical models (normal, ramped‐south, ramped‐north and abundant‐edge). Results The relative abundance and life‐history traits showed different spatial patterns among species. Relative abundance (across sites) was fitted by a normal model in only two species. No model fitted the spatial variation in body size and size at first maturity, which showed a slight but monotonic poleward increase in all species. Sex ratio showed a prominent hump‐shaped pattern, with females prevailing in the centre of the ranges and males dominating towards the range boundaries; this pattern was statistically significant in three of the five studied species. The proportion of ovigerous females showed no clear latitudinal trends, and mature individuals were observed across most of the geographical range of the species. However, recruits tended to be absent towards the southern (poleward) boundaries of the distribution. Main conclusions The ACH does not apply to all species equally. The link between abundance and life‐history traits is complex and variable among the porcelain crab species studied. Overall, the observed patterns were consistent with the idea that equatorward boundaries might be controlled by physiological restrictions mainly affecting adult survival, whereas poleward boundaries might be shaped by limitations in reproductive output and larval survival. Our results underline the importance of incorporating ecological, physiological and life‐history studies in future tests of the ACH.  相似文献   

9.
Aim Despite the pervasive and well‐documented effects of global warming on species’ ranges in terrestrial taxa and systems, the effect of sea surface warming has been poorly studied in marine systems. Here we analyse changes in the southern endpoints of distribution of rocky intertidal species (gastropods and chitons) along the Chilean coast, and trends in sea surface temperature (SST), using data collected during the last half‐century. Location South‐eastern Pacific coast, between 18°20′ S and 42°35′ S. Methods Past southern endpoints of distribution were obtained for 10 intertidal species from museum collections and literature reviews. Current endpoints are based on field sampling conducted between 1998 and 2000. Changes in the position of southern endpoints were analysed individually for each species, as well as for the entire assemblage of species included in the analysis. SST records encompassing 51–57 years were obtained from five coastal stations located between 18° and 36° S. Results and main conclusions Most species (eight of 10) did not show expansion of their southern endpoint. The proportion of species expanding, contracting or maintaining their southern limit did not differ from chance expectation. On average, species showed small (1° latitude), non‐significant contractions, with low rates of decadal change (0.18° latitude per 10 years). This pattern can be explained by changes in SST, which showed a weak warming trend (and at some sites even cooling) along the Chilean coast during the last 57 years. Our results show that different regional warming trends occur, and suggest that generalizations about poleward shifts in species ranges cannot be made. However, our results support the hypothesis that temperature is a major determinant of species range dynamics.  相似文献   

10.
The Atlantic silverside, Menidia menidia (Pisces: Atherinidae), exhibits an exceptionally high level of clinal variation in sex determination across its geographic range. Previous work suggested linear changes in the level of temperature‐dependent sex determination (TSD) with increasing latitude. Based on comparisons at 31 sites encompassing the entire species’ range, we find that the change in level of TSD with latitude is instead highly nonlinear. The level of TSD is uniformly high in the south (Florida to New Jersey), then declines rapidly into the northern Gulf of Maine where genotypic sex determination (GSD) predominates and then rebounds to moderate levels of TSD in the northern‐most populations of the Gulf of St. Lawrence. Major latitudinal breakpoints occur in central New Jersey (40oN) and the northern Gulf of Maine (44oN). No populations display pure TSD or GSD. Length of the growing season is the likely agent of selection driving variation in TSD with a threshold at 210 days. Because gene flow among populations is high, such distinct patterns of geographic variation in TSD/GSD are likely maintained by contemporary selection thereby demonstrating the adaptive fine tuning of sex determining mechanisms.  相似文献   

11.
1. There is wide intra‐specific variation in sexual size dimorphism (SSD). Much of this variation is probably as a result of sexual differences in the selective pressure on body size. However, environmental variables could affect males and females differently, causing variation in SSD. 2. We examined the effects of two temperatures (20 and 30 °C) on SSD in six populations of the blowfly, Chrysomya megacephala. 3. We found that body size increased with temperature in all the populations studied, and the sexes differed in phenotypic plasticity of body size in response to rearing temperature. This created substantial temperature‐induced variation in SSD (i.e. sex × temperature interaction). Males were often smaller than females, but the degree of dimorphism was smaller at the higher temperature (30 °C) and larger at the lower temperature (20 °C). This change in SSD was not because of a gender difference in the effect of temperature on development time. Further studies should address whether this variation can be produced by adaptive canalisation of one sex against variation in temperature, or whether it may be a consequence of non‐adaptive developmental differences between the sexes. 4. Although most studies assume that the magnitude of SSD is fixed within a species, the present study demonstrates that rearing temperature can generate considerable intra‐specific variation in the degree of SSD.  相似文献   

12.
Reaction norms across three temperatures of development were measured for thorax length, wing length and wing length/thorax length ratio for ten isofemale lines from each of two populations of Drosophila aldrichi and D. buzzatii. Means for thorax and wing length in both species were larger at 24 °C than at either 18 °C or 31 °C, with the reduction in size at 18 °C most likely due to a nutritional constraint. Although females were larger than males, the sexes were not different for wing length/thorax length ratio. The plasticity of the traits differed between species and between populations of each species, with genetic variation in plasticity similar for the two species from one locality, but much higher for D. aldrichi from the other. Estimates of heritabilities for D. aldrichi generally were higher at 18 °C and 24 °C than at 31 °C, but for D. buzzatii they were highest at 31 °C, although heritabilities were not significantly different between species at any temperature. Additive genetic variances for D. aldrichi showed trends similar to that for heritability, being highest at 18 °C and decreasing as temperature increased. For D. buzzatii, however, additive genetic variances were lowest at 24 °C. These results are suggestive that genetic variation for body size characters is increased in more stressful environments. Thorax and wing lengths showed significant genetic correlations that were not different between the species, but the genetic correlations between each of these traits and their ratio were significantly different. For D. aldrichi, genetic variation in the wing length/thorax length ratio was due primarily to variation in thorax length, while for D. buzzatii, it was due primarily to variation in wing length. The wing length/thorax length ratio, which is the inverse of wing loading, decreased linearly as temperature increased, and it is suggested that this ratio may be of greater adaptive significance than either of its components.  相似文献   

13.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

14.
The effect of incubation temperature on embryonic development and offspring traits has been widely reported for many species. However, knowledge remains limited about how such effects vary across populations. Here, we investigated whether incubation temperature (26, 28, and 30 °C) differentially affects the embryonic development of Asian yellow pond turtle (Mauremys mutica) eggs originating from low‐latitude (Guangzhou, 23°06′N) and high‐latitude (Haining, 30°19′N) populations in China. At 26 °C, the duration of incubation was shorter in the high‐latitude population than in the low‐latitude population. However, this pattern was reversed at 30 °C. As the incubation temperature increased, hatching success increased in the low‐latitude population but slightly decreased in the high‐latitude population. Hatchlings incubated at 30 °C were larger and righted themselves more rapidly than those incubated at 26 °C in the low‐latitude population. In contrast, hatchling traits were not influenced by incubation temperature in the high‐latitude population. Overall, 30 °C was a suitable developmental temperature for embryos from the low‐latitude population, whereas 26 and 28 °C were suitable for those from the high‐latitude population. This interpopulation difference in suitable developmental temperatures is consistent with the difference in the thermal environment of the two localities. Therefore, similarly to posthatching individuals, reptile embryos from different populations might have evolved diverse physiological strategies to benefit from the thermal environment in which they develop. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 35–43.  相似文献   

15.
Aim In this study we evaluate patterns of endemism for benthic polychaete species along the southeastern Pacific coast of Chile. Our goals were (1) to describe latitudinal gradients of endemism and identify areas of high endemism, (2) to evaluate the effect of biogeographical limits on endemism patterns, and (3) to evaluate indirectly the role played by evolutionary dynamics on patterns of endemism. Location South‐eastern Pacific coast of Chile, ranging from Arica (18° S) to Cape Horn (56° S). Methods We used a list of 178 species of endemic, shallow benthic polychaetes to evaluate patterns of endemism. Parsimony analysis of endemicity (PAE) and the endemism index (EI) were used to evaluate hierarchical relationships of endemism between different latitudinal bands, and to identify areas with high degrees of endemism and differences in endemism. We evaluated the effect of biogeographical limits on endemic polychaete fauna by testing for the existence of geometric constraints (mid‐domain effect). The role of evolutionary dynamics on latitudinal patterns of endemism was evaluated with nestedness analysis (NA) using the temperature index. Results The PAE analysis indicated two large, separate areas of endemism: (1) the northern area between 18° S and 38° S, and (2) the southern area between 39° S and 56° S. The endemism index showed a maximum value (32 species) around 39°–41° S. Species‐richness curves of each 3° band of latitude showed a clear mid‐domain effect (69%), but the two maximum points of species richness at mid‐latitudes (36° S to 38° S and 39° S to 41° S) did not correspond to the mid‐domain peak in species richness, presenting a greater number of species than expected by the mid‐domain effect. The nestedness analysis showed that the number of genera reaches a maximum of 70 at mid‐latitudes (36°–41° S), decreasing towards both the northern and southern areas. The spatial distribution of the entire data set of endemic species showed a nested pattern (T° = 24.5°, P < 0.0001). Main conclusions Our results strongly support the existence of a latitudinal gradient of endemism for benthic polychaete species along the Chilean coast. The shape of this gradient is clearly non‐linear, with a marked peak of endemism occurring at mid‐latitudes (36°–41° S, endemism hotspot), which also corresponds to a peak in species richness. Furthermore, this hotspot is the midpoint separating two distinct areas of endemism to the north and south. We suggest that the observed pattern of endemism for benthic polychaete taxa of the Chilean coast can be explained by a combination of geometric constraints and historical mechanisms, such as the processes that affected the Chilean coast during the Neogene (e.g. ENSO, oxygen minimum zone, glaciations).  相似文献   

16.
Phally, a genital dimorphism found in some species of self-compatible simultaneous hermaphrodites, presents an opportunity to examine factors maintaining outcrossing within an animal species in the presence of recombination. Both aphallics and euphallics can self-fertilize but only euphallics develop a functional penis and prostate allowing them to donate sperm. Previous studies of phally in the gastropod Bulinus truncatus (Mollusca: Pulmonata) suggest that phally may be under direct genetic control in some populations and strongly influenced by environmental factors in others. Experiments reported here identify temperature as a cue affecting phally determination in two populations of B. truncatus. In both populations, a higher proportion of euphallics was produced at low temperature (22 ± 1°C) than at high temperature (30 ± 1°C). Temperatures experienced by parents did not affect the proportion of euphallics they produced. Instead, phally was sensitive to temperature during the egg stage postoviposition and during the hatchling stage; the relative influence of temperature before and after hatching varied between populations. The total number of hatchlings reaching maturity at high and low temperature did not differ, but at low temperature, snails took longer to hatch and mature, and had lower survivorship. Just as studies of environmental sex determination have shed light on selective pressures influencing sex ratio evolution, we suggest that temperature-sensitive phally determination may shed light on the selective pressures maintaining outcrossing in B. truncatus.  相似文献   

17.
Reproductive diapause is a primary mechanism used by arthropods to synchronize their life cycle with seasonal changes in temperate regions. Our study species, Drosophila montana, represents the northern insect species where flies enter reproductive diapause under short day conditions and where the precise timing of diapause is crucial for both survival and offspring production. We have studied clinal variation in the critical day length for female diapause induction (CDL) and their overall susceptibility to enter diapause (diapause incidence), as well as the temperature sensitivity of these traits. The study was performed using multiple strains from four latitudinal clines of the species – short clines in Finland and Alaska and long clines in the Rocky Mountains and the western coast of North America – and from one population in Kamchatka, Russia. CDL showed strong latitudinal clines on both continents, decreasing by one hour per five degrees decline in latitude, on average. CDL also decreased in all populations along with an increase in fly rearing temperature postponing the diapause to later calendar time, the effects of temperature being stronger in southern than in northern population. Female diapause incidence was close to 100% under short day/low temperature conditions in all populations, but decreased below 50% even under short days in 19°C in the southern North American western coast populations and in 22°C in most populations. Comparing a diversity of climatic data for the studied populations showed that while CDL is under a tight photoperiodic regulation linked with latitude, its length depends also on climatic factors determining the growing season length. Overall, the study deepens our understanding of how spatial and environmental parameters affect the seasonal timing of an important biological event, reproductive diapause and helps to estimate the evolutionary potential of insect populations to survive in changing climatic conditions.  相似文献   

18.
Negative frequency‐dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long‐lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex‐ratio variation in two chromosome races of Rumex hastatulus, an annual, wind‐pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female‐biased sex ratios. Female‐biased sex ratios characterized most populations of R.  hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high‐density populations had the highest proportion of females, whereas smaller, low‐density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female‐biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.  相似文献   

19.
Unlike birds and mammals, in many reptiles the temperature experienced by a developing embryo determines its gonadal sex. To understand how temperature-dependent sex determination (TSD) evolves, we must first determine the nature of genetic variation for sex ratio. Here, we analyze among-family variation for sex ratio in three TSD species: the American alligator (Alligator mississipiensis), the common snapping turtle (Chelydra serpentina) and the painted turtle (Chrysemys picta). Significant family effects and significant temperature effects were detected in all three species. In addition, family-by-temperature interactions were evident in the alligator and the snapping turtle, but not in the painted turtle. Overall, the among-family variation detected in this study indicates potential for sex-ratio evolution in at least three reptiles with TSD. Consequently, climate change scenarios that are posited on the presumption that sex-ratio evolution in TSD reptiles is genetically constrained may require reevaluation.  相似文献   

20.
Ophryotrocha labronica is a gonochoristic polychaete worm whose sex determining mechanism and sex ratio control are supposed to be polygenic. From a lab population, whose sex ratio (i.e., proportion of males) was 0.5, the estimate of sex ratio heritability by offspring-father regression was 0.54 ± 0.15 and by offspring-mother regression was not significantly different from 0. Estimate of sex ratio repeatability between successive broods of a pair was 0.64 ± 0.33. Since female parents do not contribute in any way to the variability of sex ratio, sex ratio variation seems to be largely a paternal character. On the basis of these estimates we advance the hypothesis that in this species sex is determined by a multilocus genetic system, allowing the combined effects of a female major sex gene (which could give rise to a form of female heterogamety) and masculinizing modifiers. The hypothesis that the male sex has the least canalised sexual differentiation is supported by the observation that some old males developed oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号