首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
用5种实验方法对东北草原区233种植物光合类型进行鉴定,并对其相对分布随纬度变化关系及其与土壤含盐量和PH值的关系进行分析.在此基础上对几种典型C3、C4牧草适应于盐碱环境的生理特点进行深入研究结果表明,在所鉴定的233种植物中,C3植物有144种,隶属于28科94属,C4植物有89种;隶属于17科55属,在高纬度地区C3植物表现出更高的生长优势,在纬度较低和盐碱化区域,C4植物分布具相对优势.尤其在盐碱化程度较重的地区,C4植物成为明显的优势种,分布上的差别决定于它们对环境适应机制上的差异C3植物对盐碱环境适应机制主要通过积累脯氨酸等有机溶质进行渗透调节,而C4植物主要通过液泡中离子区域化积累作用进行调节,并且与C3植物相比对盐碱环境具更强的适应能力.  相似文献   

2.
通过田间试验,研究了FACE(开放式空气CO2浓度升高)条件下C3作物水稻(Oryza sativa)和C4杂草稗草(Echinochloa crusgalli)的生长和竞争关系.结果表明,FACE条件下C3植物水稻生物量和产量增加,叶片数增加,分蘖数增加,叶面积系数(LAI)增大;而C4植物稗草相反.FACE条件下水稻和稗草叶面积均减少,而净同化率(NAR)均增加.FACE条件下水稻稗草比例为1:1时,水稻与稗草的生物量比率、产量比率、LAI比率、茎蘖比率和NAR比率均增加,水稻稗草的竞争关系发生变化,水稻(C3植物)竞争能力增加,稗草(C4植物)竞争能力下降.  相似文献   

3.
FACE试验(free-air CO2 enrichment)开展的10多年中,供试农作物主要有:C3禾本科作物小麦(Triticum aestivum L.)、多年生黑麦草(Lolium perenne)和水稻(Oryza sativa L.),C4禾本科类高粱(Sorghum bicolor(L.)Mench),C3豆科植物白三叶草(Trifolium repens),C3非禾本科块茎状作物马铃薯(Solanum tuberosum L.),以及多年生C3类木本作物棉花(Gossypium hirsutumL.)和葡萄(Vitis viniferaL.).本文系统整理和分析了以下各项参数的结果:光合作用、气孔导度、冠层温度、水分利用、水势、叶面积指数、根茎生物量累积、作物产量、辐射利用率、比叶面积、N含量、N收益、碳水化合物含量、物候变化、土壤微生物、土壤呼吸、痕量气体交换以及土壤碳固定.CO2浓度升高对农作物的影响作用主要表现在以下方面:(1)促进了植物光合作用、增加了其生物量累积;(2)显著提高C3作物产量,但对C4作物产量的影响很小;(3)降低了C3和C4作物气孔导度,非常显著地提高了所有作物的水分利用率;(4)对植物生长的促进作用在水分不足与水分充足时二者相当或前者大于后者;(5)对非豆科植物生长的促进作用要受到土壤低N水平限制,而对豆科植物则不受氮肥水平限制;(6)对根系生长的促进作用要大于地上部分;(7)对多年  相似文献   

4.
曾青  朱建国 《生态学杂志》2002,(10):1339-1343
CO2浓度升高对植物的光合作用、呼吸作用和水分利用等生理过程产生直接影响,进而影响植物的生长和繁殖.CO2浓度升高对于具有C3光合途径的植物较具C4光合途径的植物更为有益.由于许多重要的杂草是C4植物,而许多重要的作物是C3植物,CO2浓度升高对杂草/作物的相互关系将有重要影响.本文就全球CO2浓度升高和气候变化对杂草/作物之间竞争关系影响进行综述,同时针对目前研究现状和可持续农业的需要,提出CO2浓度升高条件下杂草/作物之间竞争关系及未来农田杂草治理方面理论与实践中有待解决的问题.  相似文献   

5.
目前, 在中国区域关于植物碳稳定性同位素组成(δ13C)已经有了很多的研究, 同时, δ 13C作为植物水分利用效率(WUE)的替代指标, 得到了越来越广泛的应用。而这些研究多集中在站点或小的区域尺度, 那么在整个中国区域尺度上, δ13C能否作为植物WUE的替代指标值得探讨。该文通过对文献资料的收集整理, 研究了中国区域187个采样点478种C3植物叶片的δ13C, 统计分析结果表明δ13C的变化范围为-33.50‰- -22.00‰, 均值为-(27.10 ± 1.70)‰。在乔木、灌木和草本3种不同的生活型间, 叶片δ13C的差异达到极显著水平, 其中以草本的δ13C最高, 乔木最低, 这与在站点或小的区域尺度上的研究结果不同。对不同系统发育类型的植物而言, 种子植物的δ13C极显著地大于蕨类植物; 祼子植物与被子植物间的差异未达到显著水平; 单子叶植物极显著地大于双子叶植物。叶片δ13C值随经度的变化没有明显的规律, 但是随纬度的增加, δ 13C极显著地升高。随年均温度和年均降雨量的降低, 叶片δ13C值极显著升高。年均降雨量与δ13C间的这种极显著的负相关关系, 与WUE和降水量间的关系一致, 这表明在大的区域尺度上, δ13C可以作为植物WUE的指示指标。  相似文献   

6.
模拟氮沉降对杂草生长和氮吸收的影响   总被引:9,自引:3,他引:6  
以杂草早熟禾、黑麦草、野燕麦、天蓝苜蓿、白车轴草、北美车前、婆婆纳、无芒稗、牛筋草和刺苋为试验材料,以4.0g·m-2·yr-1的N输入为模拟氮沉降浓度,研究了不同杂草功能类群对模拟氮沉降的响应.结果表明,模拟氮沉降处理下,杂草的生物量(总生物量、地上部分生物量、根生物量)呈增加趋势,但不同功能类群对氮增加的响应明显不同,C4禾本科、C3豆科及C3禾本科植物的生物量受到氮沉降的显著促进,但C3非禾本科和C4非禾本科植物的生物量则受氮沉降的影响不显著;不同功能类群的根冠比、植株含氮及植株吸收氮的总量对模拟氮沉降的响应无明显规律,但物种间差异显著.氮沉降提高野燕麦和北美车前的生物量的根冠比,但对其他生物种类没有显著影响.没有发现氮沉降对植物体内的含氮量有显著的影响,但氮沉降却显著地提高了除刺苋、早熟禾及婆婆纳之外的所有杂草物种对N的摄收.由于物种对氮沉降的响应不同,未来氮沉降的增加将加速杂草群落组成的变化.  相似文献   

7.
基于干旱频率增加、强度增大这一全球降水变化背景, 探究干旱-复水条件下不同功能群(C3和C4)植物的光合生理响应及生长适应策略有助于预测降水格局变化条件下草地的植被组成和生态系统功能。该研究采用盆栽实验, 以松嫩草地生长的一年生C3 (4种)和C4 (3种)牧草为实验材料, 设置了对照、中度干旱和重度干旱3个水分处理水平, 在干旱末期及复水期对植物进行气体交换、生物量和比叶质量的测量。在干旱条件下, 各物种净光合速率和气孔导度均呈下降趋势, 水分利用效率呈上升趋势。干旱对不同植物光合指标的影响存在功能群差异, 随干旱程度的增加C4植物逐渐丧失光合优势, 重度干旱对C4植物净光合速率的影响较C3植物更加明显。由于干旱条件下C3植物光合固碳主要受气孔限制而C4植物主要受代谢限制, 因此复水后C4植物净光合速率恢复速度较C3植物慢。干旱条件下, 各物种的生物量降低, 根冠比和比叶质量升高, 干旱对C3植物各生长指标的影响均大于C4植物; 复水处理后, C3植物生物量随干旱强度增加呈下降趋势, 而C4植物的生物量与对照相比无显著差异。  相似文献   

8.
二氧化氮(NO2)是大气氮氧化物之一,是大气气溶胶颗粒形成的主要成分,降低大气NO2浓度可减轻空气中的雾霾.大气NO2通过干沉降和湿沉降两种方式降落到植物叶片.植物吸收NO2后主要通过两种代谢途径来降低空气中NO2浓度: 一是主要在细胞质和叶绿体中利用还原酶的氮代谢途径,二是在质外体和细胞质中的歧化反应.植物吸收NO2干扰了植物正常的生长和生理代谢,包括: 植物营养和生殖生长,植物体内硝酸还原酶(NaR)活性、亚硝酸还原酶(NiR)活性、氮素吸收、光合等生理代谢过程.对目前国内外有关大气NO2影响植物生长与代谢的研究进展进行了综述,并对植物吸收NO2的生理及分子机制的未来研究方向进行了展望.  相似文献   

9.
选取荷木、海南红豆、肖蒲桃、红鳞蒲桃和红锥5种南亚热带乡土树种构建混交群落,通过5年人为提高CO2浓度和氮输入试验,研究碳-氮交互作用对南亚热带主要乡土树种及群落的生物量积累与分配的影响.结果表明:CO2浓度升高及氮沉降对植物生物量的积累和分配的影响因树种不同而有显著差异.CO2浓度升高和氮沉降对豆科植物生物量积累相对提高了49.3%和71.0%,且促进了阳生植物生物量的积累;氮沉降能显著提高偏阴生植物生物量积累,但在CO2浓度升高条件下,其生物量积累低于对照.CO2浓度升高抑制了阳生植物地下生物量的分配,但促进偏阴生植物地下生物量的分配.CO2浓度升高、氮沉降以及碳-氮交互作用对南亚热带植物群落生物量积累均具有促进作用;CO2浓度升高促进群落地下生物量积累,氮沉降显著提高其地上部分生物量分配.在全球变化背景下,南亚热带林业固碳树种适宜选用海南红豆和红锥.  相似文献   

10.
城市景观水体是大气CO2与CH4的排放热源,而水生植物作为景观水体的重要组成要素,对水体温室气体排放动态的影响并不清楚。选择重庆市观音塘国家湿地公园为研究区,利用漂浮箱法与顶空平衡法对观音塘水域7种不同水生植物分布区进行水-气界面CO2与CH4排放通量及CO2、CH4溶存浓度进行季节性监测,估算了植物传输对气体通量的贡献。结果表明:1)观音塘水体CO2与CH4浓度范围分别为8.0—341.8μmol/L和0.23—5.26μmol/L,排放通量分别为26.5—869.1 mmol m-2 d-1和0.40—11.15 mmol m-2 d-1,是大气净CO2与CH4排放源;2)观音塘开敞水区CO2与CH4排放通量低于大部分城市湖泊或景观水体...  相似文献   

11.
Aim Based on the biochemical and physiological attributes of C4 grasses, and on the close association between decarboxylation pathways and the taxa in which they evolved, the hypotheses tested were: (1) that C4 grasses would become progressively more abundant as precipitation decreased, with grasses of the NADP‐me subtype more abundant in wetter sites and those of the NAD‐me subtype more common in arid regions; and (2) that the distribution of grass subfamilies would also be correlated with annual precipitation. Location The study was conducted along a precipitation gradient in central Argentina, from the eastern Pampas (>1000 mm year?1) to the western deserts and semi‐deserts near the Andes (<100 mm year?1). Methods Percentage of species and relative cover of C3 and C4 grasses (including C4 subtypes) in local floras from 15 lowland sites of central Argentina were obtained from our own unpublished data and from recently published floristic surveys. Pearson correlation coefficients were obtained between grass distribution parameters and the available climatic data. Results The percentage of C4 grasses increased towards the arid extreme and showed a strong negative correlation with annual rainfall (r = ?0.74, P < 0.01). Within the C4 subtypes, the NADP‐me species showed a higher proportional representation at the wetter extreme, whereas the representation of NAD‐me species increased towards the more arid extreme. The relationship of PEP‐ck species with climatic parameters in central Argentina was less evident. The distributions of the Panicoideae and Chloridoideae subfamilies along the precipitation gradient were diametrically opposed, with the Panicoideae positively (r = 0.86, P < 0.001) and the Chloridoideae negatively (r = ?0.87, P < 0.001) correlated with annual precipitation. Main conclusions Our data are consistent with the broad observation that C4 grasses tend to dominate in areas where the wet season falls in the warmer summer months. In agreement with previously reported results for Africa, Asia, Australia and North America, we describe here for the first time a significant relationship between annual precipitation and the prevalence of the NADP‐me and NAD‐me photosynthetic pathways along climatic gradients for the Neotropics. We also report for the first time that correlations between C4 species and annual rainfall are stronger when the relative cover of grass species is considered. The association of grass subfamilies Panicoideae and Chloridoideae with rainfall is as strong as that recorded for the NADP‐me and NAD‐me variants, respectively, suggesting that characteristics other than decarboxylation type may be responsible for the geographic patterns described in this study.  相似文献   

12.
The natural geographical occurrence, carbon assimilation, and structural and biochemical diversity of species with C4 photosynthesis in the vegetation of Mongolia was studied. The Mongolian flora was screened for C4 plants by using 13C/12C isotope fractionation, determining the early products of 14CO2 fixation, microscopy of leaf mesophyll cell anatomy, and from reported literature data. Eighty C4 species were found among eight families: Amaranthaceae, Chenopodiaceae, Euphorbiaceae, Molluginaceae, Poaceae, Polygonaceae, Portulacaceae and Zygophyllaceae. Most of the C4 species were in three families: Chenopodiceae (41 species), Poaceae (25 species) and Polygonaceae, genus Calligonum (6 species). Some new C4 species in Chenopodiaceae, Poaceae and Polygonaceae were detected. C4 Chenopodiaceae species make up 45% of the total chenopods and are very important ecologically in saline areas and in cold arid deserts. C4 grasses make up about 10% of the total Poaceae species and these species naturally concentrate in steppe zones. Naturalized grasses with Kranz anatomy,of genera such as Setaria, Echinochloa, Eragrostis, Panicum and Chloris, were found in almost all the botanical-geographical regions of Mongolia, where they commonly occur in annually disturbed areas and desert oases. We analyzed the relationships between the occurrence of C4 plants in 16 natural botanical-geographical regions of Mongolia and their major climatic influences. The proportion of C4 species increases with decreasing geographical latitude and along the north-to-south temperature gradient; however grasses and chenopods differ in their responses to climate. The abundance of Chenopodiaceae species was closely correlated with aridity, but the distribution of the C4 grasses was more dependent on temperature. Also, we found a unique distribution of different C4 Chenopodiaceae structural and biochemical subtypes along the aridity gradient. NADP-malic enzyme (NADP-ME) tree-like species with a salsoloid type of Kranz anatomy, such as Haloxylon ammodendron and Iljinia regelii, plus shrubby Salsola and Anabasis species, were the plants most resistant to ecological stress and conditions in highly arid Gobian deserts with less than 100 mm of annual precipitation. Most of the annual C4 chenopod species were halophytes, succulent, and occurred in saline and arid environments in steppe and desert regions. The relative abundance of C3 succulent chenopod species also increased along the aridity gradient. Native C4 grasses were mainly annual and perennial species from the Cynodonteae tribe with NAD-ME and PEP-carboxykinase (PEP-CK) photosynthetic types. They occurred across much of Mongolia, but were most common in steppe zones where they are often dominant in grazing ecosystems. Received: 17 March 1999 / Accepted: 1 November 1999  相似文献   

13.
A survey of C4 plants in Europe was performed with 216 species based on information in the literature and new studies. C4 species were found in 10 families: the eudicots Amaranthaceae, Chenopodiaceae, Euphorbiaceae, Molluginaceae, Nyctaginaceae, Polygonaceae, Portulacaceae and Zygophyllaceae and the monocots Cyperaceae and Poaceae. The majority of the C4 species belong to four families, Amaranthaceae (23), Chenopodiaceae (65), Cyperaceae (27) and Poaceae (88). In central and southern Europe, the abundance of native C4 plants varied between 44 and 88% of total C4 plants occurring, the rest being invasive C4 species. The occurrence of total C4 species, C4 monocots and C4 Chenopodiaceae was assessed for five major phyto‐geographical regions of Europe (north‐west, north‐east, central, south‐west, and south‐east). The abundance of C4 plants of total C4 dicots, C4 Chenopodiaceae, total C4 monocots, C4 Poaceae and C4 Cyperaceae was related to the climatic variables of annual mean daily temperature, annual precipitation and DeMartonne's aridity index. The abundance of total C4 plants decreases with increasing temperature and expression of aridity (decreasing aridity index) and is not correlated with precipitation. The abundance of total C4 dicots and C4 Chenopodiaceae is correlated with precipitation and aridity but not temperature, whereas the abundance of total C4 monocots, C4 Poaceae and C4 Cyperaceae is correlated with temperature and aridity but not precipitation. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 283–304.  相似文献   

14.
Aim Numerous studies have examined the climatic factors that influence the abundance of C4 species within the grass flora (C4 relative species richness) in various regions throughout the world, but very few have examined the relative abundance of C4 vs. C3 grasses (C4 relative abundance). We sought to determine the climatic factors that influence C4 relative abundance throughout Australia. Location Australia (including Tasmania). Methods We measured C4 relative abundance at 168 locations and measured δ13C (the abundance of 13C relative to 12C) of the bone collagen of 779 kangaroos collected throughout Australia, as bone collagen δ13C was assumed to be proportional to the relative abundance of C4 grasses in the diet. Results Both C4 relative abundance and kangaroo bone collagen δ13C were found to have a strong positive relationship with seasonal water availability, i.e. the distribution of rainfall in the C4 vs. C3 growing seasons (76% and 69% of deviance explained, respectively). There was clear evidence that seasonal water availability was a better predictor of both C4 relative abundance and bone collagen δ13C than other climate variables such as mean annual temperature and January daily minimum temperature. However, seasonal water availability appeared to be a relatively poor predictor of C4 relative species richness, which was most closely related to January daily minimum temperature (90% of deviance explained). Main conclusions Our results highlight the relatively poor relationship between C4 relative abundance and C4 relative species richness, and suggest that these two variables may be related to different climatic factors. They also suggest that caution is required when using C4 relative species richness to infer the relative biomass and productivity of C4 grasses on a global scale.  相似文献   

15.
Question: Are trait differences between grasses along a gradient related to climatic variables and/or photosynthetic pathway? Location: Temperate grassland areas of South and North America. Methods: In a common garden experiment, we cultivated C3 and C4 grasses from grasslands under different climatic conditions, and we measured a set of 12 plant traits related to size and resource capture and utilization. We described (1) interspecific plant trait differences along a climatic gradient defined by the precipitation and temperature at the location where each species is dominant and (2) the association between those plant trait differences and the photosynthetic pathway of the species. Results: Trait differences between grasses were related to the precipitation at the area where each species is dominant, and to the photosynthetic pathway of the species. Leaf length, leaf width, plant height, leaf area per tiller, specific leaf area, leaf δ13C ratio, and nitrogen resorption efficiency increased while leaf dry matter content and nitrogen concentration in senesced leaves decreased as precipitation increased. A proportion of these changes along the gradient was related to the photosynthetic pathway because dominant grass species in cold areas with low precipitation are mainly C3 and those from warm and wet areas are C4. Conclusions: A previous worldwide analysis showed that traits of graminoid species measured in situ changed slightly along climatic gradients (< 10% variance explained). In contrast, under a common environment we observed that (1) grass traits changed strongly along a climatic gradient (30‐85% variance explained) and, (2) a proportion of those changes were related to the association between photosynthetic pathway of the species and precipitation.  相似文献   

16.
17.
Temperature and vapor pressure deficit (VPD) effects on turfgrass growth are almost always confounded in experiments because VPD commonly is substantially increased in elevated-temperature treatments. The objective of this study as to examine specifically the influence of VPD on transpiration response of four ‘warm-season’ (C4) and four ‘cool-season’ (C3) turfgrasses to increasing VPD at a stable temperature (29.3 ± 1.5 °C). Although transpiration rates were noticeably lower in C4 grasses, transpiration rates increased linearly in response to increasing VPD across the range of 0.8–3.0 kPa. In contrast, transpiration rates of C3 increased sharply with increasing VPD across the range of low VPDs, but became constrained at higher VPDs (>1.35 kPa). Restricted transpiration rate at elevated VPD was most evident in Agrostis palustris and Lolium perenne. Assuming restricted transpiration rates reflect a limitation on leaf CO2 uptake, these results indicate that the commonly observed decline in growth of C3 (and success of C4) grasses at elevated temperature may include a sensitivity to elevated VPD.  相似文献   

18.
Leaf‐chewing insects are commonly believed to be unable to crush the nutrient‐rich bundle sheath cells (BSC) of C4 grasses. This physical constraint on digestion is thought to reduce the nutritional quality of these grasses substantially. However, recent evidence suggests that BSC are digested by grasshoppers. To directly assess the ability of grasshoppers to digest C4 grass BSC, leaf particles of Bouteloua curtipendula (Poaceae) were examined from the digestive tracts of two grasshopper species: Camnula pellucida (Scudder) (primarily a grass feeder) and Melanoplus sanguinipes (Fabricius) (a forb and grass generalist) (Orthoptera: Acrididae). Transmission electron microscopy was used to make the first observations of BSC crushing by herbivorous insects. Camnula pellucida and M. sanguinipes crushed over 58% and 24%, respectively, of the BSC in ingested leaf tissues. In addition, chloroplast and cell membranes were commonly disrupted in uncrushed BSC, permitting soluble nutrients to be extracted, even when BSC walls remain intact. The greater efficiency with which C. pellucida crushes BSC is consistent with the idea that grass‐feeding species are better adapted for handling grass leaf tissues than are generalist species. By demonstrating the effectiveness with which the BSC of B. curtipendula can be crushed and extracted by both species of grasshoppers, this study suggests one reason why C4 grasses are not generally avoided by grasshoppers: at least some C4 grasses can be more easily digested than has been hypothesized.  相似文献   

19.
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses.  相似文献   

20.
Reproductive patterns of tropical and temperate plants are usually associated with climatic seasonality, such as rainfall or temperature, and with their phylogeny. It is still unclear, however, whether plant reproductive phenology is influenced by climatic factors and/or phylogeny in aseasonal subtropical regions. The plant reproductive phenology of a subtropical rain forest in northern Taiwan (24°45′ N, 121°35′ E) was monitored at weekly intervals during a 7‐yr period (2002–2009). The flowering patterns of 46 taxa and fruiting patterns of 26 taxa were examined and evaluated in relation to climatic seasonality, phylogenetic constraints, and different phenophases. Our results indicated that most of the studied species reproduced annually. Additionally, both community‐wide flowering and fruiting patterns exhibited distinct annual rhythms and varied little among years. The community flowering peak matched seasonal changes in day length, temperature, and irradiance; while the community fruiting peak coincided with an increase in bird richness and the diet‐switching of resident omnivorous birds. In addition, phylogenetically closely related species tended to reproduce during the same periods of a year. Neither the mean flowering dates nor seasonal variation in solar radiation, however, was related to the fruit development times. Our results indicate the importance of abiotic, biotic, and evolutionary factors in determining the reproductive phenology in this subtropical forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号