首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
静磁场对大肠杆菌生长过程的作用机制研究   总被引:4,自引:4,他引:0  
通过对在外加静磁场和正常情况下培养大肠杆菌生长情况的对比分析 ,发现试验条件下所选磁场对大肠杆菌有明显促进生长的作用 ,菌落计数结果表明磁场越强作用效果越明显。对试验结果进行Dunnettt检验发现均具有差异显著性  相似文献   

2.
静磁场对大肠杆菌生长过程的作用机制研究   总被引:20,自引:5,他引:15  
通过对在外加静磁场和正常情况下培养大肠杆茵生长情况的对比分析,发现试验条件下所选磁场对大肠杆茵有明显促进生长的作用,茵落计数结果表明磁场越强作用效果越明显。对试验结果进行Dunnettt检验发现均具有差异显性。  相似文献   

3.
本文评述了理论生物学的两个基础实验。一是用离子束辐照加速大肠杆菌进化的方法研究原核基因组的进化方向,证明进化中的缺失偏好性和编码信息量扩增律不矛盾。二是提出用导热法测量细胞的熵产生,比较研究了癌细胞和正常细胞的熵产生和外加电场的关系,证明在一定强度的电场作用下正常细胞的熵产生可以明显超过癌细胞,从而实现改变两类细胞间熵流方向的目的。  相似文献   

4.
为探讨食源性大肠杆菌的生长特性,建立即食食品卤鸡腿中大肠杆菌生长模型,在20℃、25℃、30℃、35℃和40℃等不同温度下测定了大肠杆菌的生长状态。采用修正的Gompertz 方程拟合大肠杆菌的生长曲线,分析了大肠杆菌的生长参数。结果表明,修正的Gompertz函数能够很好地描述大肠杆菌在20 ℃、25 ℃、30 ℃、35 ℃和40℃贮藏条件下的生长动态(R2>0.933 6)。应用平方根模型描述了温度对最大比生长速率(μm)和延滞时间(λ)参数的影响,结果表明,温度与最大比生长速率呈现较好的线性关系。此外,应用20 ℃、25℃、30 ℃、35 ℃和40℃条件下实际测得的数值与预测模型数据进行比较,验证了恒定温度下模型的有效性。所建立的预测模型能有效地预测大肠杆菌在卤鸡腿中的生长动态,为控制即食食品中大肠杆菌污染提供理论依据。  相似文献   

5.
微量热法研究磁性生物材料与大肠杆菌的相互作用   总被引:1,自引:0,他引:1  
目的:考察利用微量热法研究磁性生物材料与大肠杆菌相互作用的优势.方法:将大肠杆菌与磁性生物材料共同培养,利用微量热仪记录大肠杆菌的生长放热曲线,分析拟合获得大肠杆菌生长过程的热动力学参数.然后观察大肠杆菌的显微形态,并分析其形态变化.同时利用光电比浊法测定大肠杆菌的密度.结果:磁性生物材料导致大肠杆菌的生长速率常数降低,茵液最大放热功率下降,生长代谢受到抑制.而电镜观察发现,与磁性生物材料共同培养的大肠杆菌菌体萎缩变形,细胞壁出现褶皱和破损.与光电比浊法的研究结果相比,微量热法的研究结果能更符合电镜观察结果.结论:磁性生物材料破坏了大肠杆菌的细胞壁,导致大肠杆菌生长代谢受到抑制.此外,微量热法有助于研究磁性生物材料与细菌的相互作用.  相似文献   

6.
【目的】从大肠杆菌Nissle1917中获得L-天冬酰胺酶Ⅱ基因,并研究其抗肿瘤活性。【方法】以大肠杆菌Nissle1917基因组为模板PCR扩增L-天冬酰胺酶Ⅱ基因,克隆至可诱导表达载体pET28a上。将L-天冬酰胺酶Ⅱ表达载体pET28a-asp转化至大肠杆菌BL21(DE3)中并通过IPTG诱导表达,经聚丙烯酰胺凝胶电泳(SDS-PAGE)和液相色谱-质谱(LC-MS)对表达的L-天冬酰胺酶Ⅱ进行鉴定,并通过镍柱亲和层析纯化收集表达出的L-天冬酰胺酶Ⅱ。用纯化定量以后的L-天冬酰胺酶Ⅱ作用小鼠乳腺癌4T1细胞、人肝癌Hep-3B细胞和人脐静脉内皮细胞HUVEC。【结果】来自于大肠杆菌Nissle1917的L-天冬酰胺酶Ⅱ基因可在大肠杆菌BL21中高效表达并通过LC-MS得到鉴定,细胞毒性实验结果表明L-天冬酰胺酶Ⅱ对4T1细胞和Hep-3B细胞的生长具有较强的抑制作用,而对人脐静脉内皮细胞HUVEC的生长无明显抑制效果。【结论】来源于大肠杆菌Nissle1917的L-天冬酰胺酶Ⅱ能显著抑制4T1细胞和Hep-3肿瘤细胞的生长,而对人正常组织细胞的生长无明显抑制效果,为进一步研究L-天冬酰胺酶Ⅱ特异性抗肿瘤作用机制和对实体瘤的应用研究奠定了重要基础。  相似文献   

7.
【背景】pBHR68是表达聚-3-羟基丁酸酯(Poly-3-Hydroxybutyrate,PHB)合成基因簇的高拷贝质粒,大肠杆菌K-12突变菌株S17-3在携带该质粒时生长密度高,耐低p H且在低pH条件下生长时高产可拉酸(Colanic Acid,CA)。【目的】系统探究与菌种(大肠杆菌S17-3)及质粒(pBHR68)相关的高密度生长现象的分子机理,提示PHB和CA合成代谢与高密度生长的偶联机制。【方法】解析质粒的构成、CA合成途径基因组成对高密度生长现象的影响;利用全基因组同比分析寻找可能的关键突变基因;开展转录组学分析,筛查大肠杆菌S17-3及其转化子在不同培养方式中的转录组数据,通过基因敲除实现基因功能及细胞生长状态的验证。【结果】大肠杆菌S17-3的高密度生长菌与PHB合成的操纵子的过表达以及rhsA的多位点突变相关,RcsA是CA合成与高密度生长中碳代谢流调控的关键调控蛋白。在低pH培养时,敲除可拉酸合成的关键糖基转移酶导致生物量提升;此外,大肠杆菌S17-3/pBHR68的高密度生长还可能与乳糖操纵子异常的转录调控相关,lacZ突变株高密度生长特性消失,而且无法合成可拉酸。【结论】研究分析了引起大肠杆菌S17-3高密度生长的多种因素,为大肠杆菌提高生长密度现象的进一步分析提供了重要线索,也为利用大肠杆菌S17-3的优异生理特性将其改造为寡糖合成的底盘细胞奠定了研究基础。  相似文献   

8.
宁德刚  赵卫飞  钱亚如 《微生物学报》2013,53(10):1043-1049
摘要:【目的】证明集胞藻(Synechocystis)PCC 6803染色体上的假定基因ssl2138和sll1092构成vapBC家族的毒素-抗毒素系统(toxin-antitoxin system,TA系统)。【方法】以RT-PCR分析ssl2138和sll1092的共转录,以选择性表达系统分析其编码产物对大肠杆菌生长的影响,并通过亲和层析和质谱检测证明编码产物之间的相互作用。【结果】ssl2138和sll1092构成的二元操纵子在正常生长条件下共转录;Sll1092表达抑制大肠杆菌的生长,Ssl2138的同时表达或随后表达可拮抗Sll1092的生长抑制作用;Ssl2138与Sll1092相互作用形成复合体。【结论】位于同一操纵子中的假定基因ssl2138和sll1092构成vapBC家族的TA系统。  相似文献   

9.
益生素的研究及应用   总被引:2,自引:1,他引:1  
根据微生态学的理论,动物健康的生长,有赖于一个健康的肠道。肠道中有益菌群与致病菌群处于动态平衡,正常情况下,有益菌群占优势,以产酸乳杆菌为代表,分解肠道的单糖形成乳酸,降低肠道pH值,从而抑制大肠杆菌等病原微生物的生长,动物则保持健康。在受到应激情况...  相似文献   

10.
采用平板涂布研究电子介体中性红、亚甲基蓝和甲基紫精对大肠杆菌BL21(DE3)细胞生长的抑制情况。通过微生物燃料电池技术(MFC)研究同一浓度下上述电子介体对大肠杆菌BL21(DE3)产电性能的影响。结果表明:甲基紫精对大肠杆菌BL21(DE3)的生长抑制最强,中性红对大肠杆菌BL21(DE3)的生长抑制作用较弱;添加亚甲基蓝对于大肠杆菌BL21(DE3)MFC产电性能的提高显著;添加0.06 g/L亚甲基蓝对大肠杆菌BL21(DE3)MFC产电性能的加强效果最好。  相似文献   

11.
M Singh  E Muralidharan 《Biorheology》1988,25(1-2):237-244
The mechanism of erythrocyte aggregation has been studied in normal plasma, dextran 40 and dextran 70 suspensions in presence and absence of magnetic field at a concentration of 5 percent by laser light scattering. The inhomogeneous magnetic field enhances the aggregating tendency of normal erythrocytes. The growth of aggregates due to dextran 70 is enhanced in presence of magnetic field. On the other hand the disaggregating effect of dextran 40 is reduced due to this field. The induced changes due to magnetic field during the development of erythrocyte aggregates in these media are determined.  相似文献   

12.
The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated.

Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.  相似文献   

13.
A static magnetic field, with a strong spatial gradient, was established on the surface of cell culture dishes by use of a gilded iron needle set vertically above an Sm-Co magnet. The calculated magnetic flux density was more than 1.5 T at the center of the needle tip, and the products of the flux density and its gradient were about 200 and 60 T2/m at distances of 0.1 and 0.3 mm, respectively, from the center. The DNA content, DNA synthesis and labeling index of cultured cells located within 0.1 mm from the center of the needle, and the growth rate of cells located within 0.3 mm from the center, were measured. HeLa cells grew at a normal rate for 96 h in the magnetic field and showed no significant change in shape, detectable by scanning electron microscopy. The growth of HeLa cells was not influenced by exposure to the magnetic field. Similarly, exposure for 48 h to the magnetic field had no effect on growth of normal human gingival fibroblasts (Gin-1). The DNA content, assayed by microfluorometry of the nuclei of both types of cells stained by the Feulgen reaction, was not significantly different from that of controls. Moreover, exposure to the magnetic field had no effect on DNA synthesis or the labeling index of HeLa cells assayed by autoradiography of incorporated [3H]thymidine. It is concluded that a non-homogeneous magnetic field of the intensity and the gradient used in this study does not significantly influence the growth of HeLa cells or Gin-1 cells.  相似文献   

14.
The combined effects of external low static magnetic fields at 0–22 mT and magnesium isotopes on the growth and development of E. coli bacteria has been studied. The magnetic field and 25Mg magnetic isotope effects were obtained in two ranges: 0.8–3.0 and 8–13 mT. The experimental values of the growth rate, the number of CFUs and the ATP pool of bacteria enriched in magnetic magnesium isotope 25Mg (nuclear spin, I = 5/2) in the range of 0.8–3.0 mT are significantly higher compared to bacteria enriched in nonmagnetic isotopes 24Mg, 26Mg, or natural magnesium. The increase in the growth rate, colony-forming ability, and intracellular ATP concentration in bacteria in all groups cultivated under exposure to an external static magnetic field in the range of 0.8 to 3.0 mT confirms the existence of magnetosensitive stages of enzymatic reactions that proceed via the ion-radical mechanism. The combined influence of the magnetic field in the range of 8 to 13 mT and the magnesium magnetic isotope 25Mg on the colony forming ability of E. coli bacteria is associated with processes that are responsible for cell division. The above-mentioned effects of bacterial magnetosensitivity (to magnetic fields and magnetic isotopes) are in good agreement with theoretical predictions of the theory of spin-dependent enzymatic reactions.  相似文献   

15.
Magnetic alignment of collagen during self-assembly   总被引:6,自引:0,他引:6       下载免费PDF全文
Magnetically induced birefringence is used to monitor the thermally induced self-assembly of collagen fibrils from a solution of molecules. The magnetic torque alone can, at best, only orient the fibrils into planes normal to the field direction. Nevertheless, the gels formed have a high degree of uniaxial alignment, probably due to the additional ordering effects of surface interactions. Thus magnetic orientation is potentially useful in the study of fibrillogenesis and in the production of highly oriented collagen gels.  相似文献   

16.
The effects of non-thermal microwaves (MW), 10(-4) and 10(-10) W/cm(2), on conformation of nucleoids in E. coli cells were analyzed by the method of anomalous viscosity time dependence (AVTD). MW exposure was performed at different values of static magnetic field and concentration of oxygen, 8-90 microT, and 2.3-7.8 mg/l, respectively. It was shown, that slight changes in both static magnetic field and oxygen concentration result in significant changes of MW effects up to their disappearance. It was established, that changes in static magnetic field affected significantly the time kinetics of the MW effects. The obtained data provide further evidence for strong dependence of the effects of non-thermal microwaves on physical parameters of exposure and physiological factors. These dependences should be taken into account in replication studies. The obtained results encourage further investigation of possible modulation of non-thermal MW effects by additional electromagnetic fields.  相似文献   

17.
Magnetic field affects thymidine kinase in vivo   总被引:1,自引:0,他引:1  
Whole mice on normal or vitamin E deficient diet were immobilized by Nembutal anaesthesia and exposed to a stationary magnetic field of 1.4 tesla for up to 60 min. Thymidine kinase (TdR-K) was assayed in the high-speed supernatant of bone marrow cells which were collected into optimally adjusted nutrient medium of pH 7.3-7.4 containing 1350 mg NaHCO3 per litre and were then destroyed by sonication. In parallel, uptake of 125I-labelled 5-I-2'-deoxyuridine (125IUdR) into DNA of whole bone marrow cells, of various tissues and of the whole body was measured. The results indicate the following. The magnetic field exposure caused in bone marrow cells an increase of activity of TdR-K and of uptake of 125IUdR to about 130 per cent of control. The effect depended on immobilization of the mice in the field and on the presence of NaHCO3 in the nutrient medium used for cell collection. There was no field-induced change in body temperature. The effect on 125IUdR uptake was similar in isolated tissues and the whole body following intraperitoneal injection of the tracer. It increased to a maximum of about 135 per cent of control, during exposure times over 30 min. This effect is not explained as a result of a temporary change in the rate of cell proliferation. Vitamin E deficiency caused a depression of activity of TdR-K and of uptake of 125IUdR in bone marrow cells to about 75 per cent of control. This depression was similar to that observed after whole body gamma-irradiation with about 0.01 Gy (1 rad). The inhibitory effects of vitamin E deficiency on TdR-K were overcome by exposure to the magnetic field. Immediately after cessation of the magnetic field for 60 min, 125IUdR uptake was normal; normalization of uptake was delayed with exposure times shorter than 60 min. A 60 min exposure to the magnetic field had no long term effect on turnover of labelled cells in the mice. The data imply the non-specific control of thymidine kinase by charged molecular species and the modification of this control by the magnetic field.  相似文献   

18.
Effects of static magnetic fields at the cellular level   总被引:9,自引:0,他引:9  
There have been few studies on the effects of static magnetic fields at the cellular level, compared to those of extremely low frequency magnetic fields. Past studies have shown that a static magnetic field alone does not have a lethal effect on the basic properties of cell growth and survival under normal culture conditions, regardless of the magnetic density. Most but not all studies have also suggested that a static magnetic field has no effect on changes in cell growth rate. It has also been shown that cell cycle distribution is not influenced by extremely strong static magnetic fields (up to a maximum of 10 T). A further area of interest is whether static magnetic fields cause DNA damage, which can be evaluated by determination of the frequency of micronucleus formation. The presence or absence of such micronuclei can confirm whether a particular treatment damages cellular DNA. This method has been used to confirm that a static magnetic field alone has no such effect. However, the frequency of micronucleus formation increases significantly when certain treatments (e.g., X-irradiation) are given prior to exposure to a 10 T static magnetic field. It has also been reported that treatment with trace amounts of ferrous ions in the cell culture medium and exposure to a static magnetic field increases DNA damage, which is detected using the comet assay. In addition, many studies have found a strong magnetic field that can induce orientation phenomena in cell culture.  相似文献   

19.
The effect of weak disturbance (up to 300 microT) of natural magnetic field on the development of alcohol addiction in rats exposed to information load (training in a complex maze) was studied. It was found that learning against the background of inhomogenous magnetic field led to 3-13-fold increase of alcohol intake in 100% of rats. At the same time, under conditions of the same information load against the background of natural magnetic field, this phenomenon was observed in 45% of animals and was less expressed (a 2.4-fold increase). Unlike the control groups, the effect of magnetic field was independent neither on the level of initial alcohol preference, nor on the exploratory ability of animals. The increased alcohol uptake persisted for two months after the termination of the information load. It is suggested that the higher energetic level is needed in the presence of the weak inhomogenous magnetic field for normal exploratory activity. In this case, ethanol can serve as an additional source of energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号