首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
ABSTRACT

Disease-related prion protein (PrPSc), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrPSc in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the prion infectivity was not simply proportional to the amount of PrPSc in the brain. Centrifugation (20,000 ×g) of the brain homogenate showed that most of the PrPSc was precipitated into the pellet, and the supernatant contained only a slight amount of PrPSc. Interestingly, mice inoculated with the obtained supernatant showed incubation periods that were approximately 15 d longer than those of mice inoculated with the crude homogenate even though both inocula contained almost the same infectivity. Our results suggest that a small population of fine PrPSc may be responsible for prion infectivity and that large, aggregated PrPSc may contribute to determining prion disease duration.  相似文献   

2.
3.
One of the main characteristics of the transmissible isoform of the prion protein (PrPSc) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrPSc following Western blot or ELISA. More recently, researchers determined that there is a sizeable fraction of PrPSc that is sensitive to PK hydrolysis (sPrPSc). Our group has previously reported a method to isolate this fraction by centrifugation and showed that it has protein misfolding cyclic amplification (PMCA) converting activity. We compared the infectivity of the sPrPSc versus the PK-resistant (rPrPSc) fractions of PrPSc and analyzed the biochemical characteristics of these fractions under conditions of limited proteolysis. Our results show that sPrPSc and rPrPSc fractions have comparable degrees of infectivity and that although they contain different sized multimers, these multimers share similar structural properties. Furthermore, the PK-sensitive fractions of two hamster strains, 263K and Drowsy (Dy), showed strain-dependent differences in the ratios of the sPrPSc to the rPrPSc forms of PrPSc. Although the sPrPSc and rPrPSc fractions have different resistance to PK-digestion, and have previously been shown to sediment differently, and have a different distribution of multimers, they share a common structure and phenotype.  相似文献   

4.
E Sulkowski 《FEBS letters》1992,307(2):129-130
Octa-repeats of prion proteins (PrP) contain histidine and tryptophan residues which are known to function as ligands for transition metals. It is proposed that the spontaneous conversion of the PrPC (cellular) isoform into PrPSc (scrapie) isoform may be triggered by the coordination of these metals.  相似文献   

5.
The salivary glands of scrapie-affected sheep and healthy controls were investigated for the presence of the pathological prion protein (PrP(Sc)). PrP(Sc) was detected in major (parotid and mandibular) and minor (buccal, labial, and palatine) salivary glands of naturally and experimentally infected sheep. Using Western blotting, the PrP(Sc) concentration in glands was estimated to be 0.02 to 0.005% of that in brain. Immunohistochemistry revealed intracellular depositions of PrP(Sc) in ductal and acinar epithelia and occasional labeling in the lumina of salivary ducts. The presence of PrP(Sc) in salivary glands highlights the possible role of saliva in the horizontal transmission of scrapie.  相似文献   

6.
Many lines of evidence suggest an interaction between glycosaminoglycans (GAGs) and the PrP proteins as well as a possible role for GAGs in prion disease pathogenesis. In this work, we sought to determine whether the PrP-GAG interaction affects the incorporation of PrP(Sc) (the scrapie isoform of PrP) to normal cells. This may be the first step in prion disease pathogenesis. To this effect, we incubated proteinase K-digested hamster scrapie brain homogenates with several lines of Chinese hamster ovary (CHO) cells in the presence or absence of heparin. Our results show that over a large range of PrP(Sc) concentrations the binding of PrP(Sc) to wild type CHO cells, which do not express detectable PrP, was equivalent to the binding of PrP(Sc) to CHO cells overexpressing PrP. A significant part of PrP(Sc) binding to both lines could be inhibited by heparin. Additional evidence that PrP(Sc) binding to cells was dependent on the presence of GAGs could be concluded from the fact that the binding of PrP(Sc) to CHO cells missing GAGs on the cell surface was significantly reduced. Interestingly, preincubation of scrapie brain homogenate with heparin before intraperitoneal inoculation into normal hamsters resulted in a significant delay in prion disease manifestation.  相似文献   

7.
Recent studies have shown that a sizable fraction of PrPSc present in prion-infected tissues is, contrary to previous conceptions, sensitive to digestion by proteinase K (PK). This finding has important implications in the context of diagnosis of prion disease, as PK has been extensively used in attempts to distinguish between PrPSc and PrPC. Even more importantly, PK-sensitive PrPSc (sPrPSc) might be essential to understand the process of conversion and aggregation of PrPC leading to infectivity. We have isolated a fraction of sPrPSc. This material was obtained by differential centrifugation at an intermediate speed of Syrian hamster PrPSc obtained through a conventional procedure based on ultracentrifugation in the presence of detergents. PK-sensitive PrPSc is completely degraded under standard conditions (50 mug/mL of proteinase K at 37 degrees C for 1 h) and can also be digested with trypsin. Centrifugation in a sucrose gradient showed sPrPSc to correspond to the lower molecular weight fractions of the continuous range of oligomers that constitute PrPSc. PK-sensitive PrPSc has the ability to convert PrPC into protease-resistant PrPSc, as assessed by the protein misfolding cyclic amplification assay (PMCA). Limited proteolysis of sPrPSc using trypsin allows for identification of regions that are particularly susceptible to digestion, i.e., are partially exposed and flexible; we have identified as such the regions around residues K110, R136, R151, K220, and R229. PK-sensitive PrPSc isolates should prove useful for structural studies to help understand fundamental issues of the molecular biology of PrPSc and in the quest to design tests to detect preclinical prion disease.  相似文献   

8.
Human prion diseases are fatal neurodegenerative disorders associated with an accumulation of PrPSc in the central nervous system (CNS). Of the human prion diseases, sporadic Creutzfeldt-Jakob disease (sCJD), which has no known origin, is the most common form while variant CJD (vCJD) is an acquired human prion disease reported to differ from other human prion diseases in its neurological, neuropathological, and biochemical phenotype. Peripheral tissue involvement in prion disease, as judged by PrPSc accumulation in the tonsil, spleen, and lymph node has been reported in vCJD as well as several animal models of prion diseases. However, this distribution of PrPSc has not been consistently reported for sCJD. We reexamined CNS and non-CNS tissue distribution and levels of PrPSc in both sCJD and vCJD. Using a sensitive immunoassay, termed SOFIA, we also assessed PrPSc levels in human body fluids from sCJD as well as in vCJD-infected humanized transgenic mice (Tg666). Unexpectedly, the levels of PrPSc in non-CNS human tissues (spleens, lymph nodes, tonsils) from both sCJD and vCJD did not differ significantly and, as expected, were several logs lower than in the brain. Using protein misfolding cyclic amplification (PMCA) followed by SOFIA, PrPSc was detected in cerebrospinal fluid (CSF), but not in urine or blood, in sCJD patients. In addition, using PMCA and SOFIA, we demonstrated that blood from vCJD-infected Tg666 mice showing clinical disease contained prion disease-associated seeding activity although the data was not statistically significant likely due to the limited number of samples examined. These studies provide a comparison of PrPSc in sCJD vs. vCJD as well as analysis of body fluids. Further, these studies also provide circumstantial evidence that in human prion diseases, as in the animal prion diseases, a direct comparison and intraspecies correlation cannot be made between the levels of PrPSc and infectivity.  相似文献   

9.
Previous studies using post-mortem human brain extracts demonstrated that PrP in Creutzfeldt-Jakob disease (CJD) brains is cleaved by a cellular protease to generate a C-terminal fragment, referred to as C2, which has the same molecular weight as PrP-(27-30), the protease-resistant core of PrP(Sc) (1). The role of this endoproteolytic cleavage of PrP in prion pathogenesis and the identity of the cellular protease responsible for production of the C2 cleavage product has not been explored. To address these issues we have taken a combination of pharmacological and genetic approaches using persistently infected scrapie mouse brain (SMB) cells. We confirm that production of C2 is the predominant cleavage event of PrP(Sc) in the brains of scrapie-infected mice and that SMB cells faithfully recapitulate the diverse intracellular proteolytic processing events of PrP(Sc) and PrP(C) observed in vivo. While increases in intracellular calcium (Ca(2+)) levels in prion-infected cell cultures stimulate the production of the PrP(Sc) cleavage product, pharmacological inhibitors of calpains and overexpression of the endogenous calpain inhibitor, calpastatin, prevent the production of C2. In contrast, inhibitors of lysosomal proteases, caspases, and the proteasome have no effect on C2 production in SMB cells. Calpain inhibition also prevents the accumulation of PrP(Sc) in SMB and persistently infected ScN2A cells, whereas bioassay of inhibitor-treated cell cultures demonstrates that calpain inhibition results in reduced prion titers compared with control-treated cultures assessed in parallel. Our observations suggest that calpain-mediated endoproteolytic cleavage of PrP(Sc) may be an important event in prion propagation.  相似文献   

10.
Prion diseases are fatal neurodegenerative disorders believed to be transmitted by PrP (Sc), an aberrant form of the membrane protein PrP (C). In the absence of an established form-specific covalent difference, the infectious properties of PrP (Sc) were uniquely ascribed to the self-perpetuation properties of its aberrant fold. Previous sequencing of the PrP chain isolated from PrP(27-30) showed the oxidation of some methionine residues; however, at that time, these findings were ascribed to experimental limitations. Using the unique recognition properties of alphaPrP mAb IPC2, protein chemistry, and state of the art mass spectrometry, we now show that while a large fraction of the methionine residues in brain PrP (Sc) are present as methionine sulfoxides this modification could not be found on brain PrP (C) as well as on its recombinant models. In particular, the pattern of oxidation of M213 with respect to the glycosylation at N181 of PrP (Sc) differs both within and between species, adding another diversity factor to the structure of PrP (Sc) molecules. Our results pave the way for the production of prion-specific reagents in the form of antibodies against oxidized PrP chains which can serve in the development of both diagnostic and therapeutic strategies. In addition, we hypothesize that the accumulation of PrP (Sc) and thereafter the pathogenesis of prion disease may result from the poor degradation of oxidized aberrantly folded PrP.  相似文献   

11.
The biochemical essence of prion replication is the molecular multiplication of the disease-associated misfolded isoform of prion protein (PrP), termed PrPSc, in a nucleic acid-free manner. PrPSc is generated by the protein misfolding process facilitated by conformational conversion of the host-encoded cellular PrP to PrPSc. Evidence suggests that an auxiliary factor may play a role in PrPSc propagation. We and others previously discovered that plasminogen interacts with PrP, while its functional role for PrPSc propagation remained undetermined. In our recent in vitro PrP conversion study, we showed that plasminogen substantially stimulates PrPSc propagation in a concentration-dependent manner by accelerating the rate of PrPSc generation while depletion of plasminogen, destabilization of its structure and interference with the PrP-plasminogen interaction hinder PrPSc propagation. Further investigation in cell culture models confirmed an increase of PrPSc formation by plasminogen. Although molecular basis of the observed activity for plasminogen remain to be addressed, our results demonstrate that plasminogen is the first cellular protein auxiliary factor proven to stimulate PrPSc propagation.Key words: prion, PrPSc, protein misfolding, auxiliary factor, plasminogen, PMCA, cell culture modelPrions are unique infectious particles that replicate in the absence of nucleic acids1 and cause fatal neurologic disorders in mammals.2 In fact, the prion particle is composed of an alternatively folded form of the cellular prion protein (PrPC) encoded by the Prnp gene. The misfolded form of PrPC, referred to as PrPSc, shares the same primary structure with PrPC,3 but exhibits distinctively different biochemical and biophysical properties.4,5 Moreover, animals lacking expression of the Prnp gene are resistant to prion infection,6 suggesting that PrPC serves as a precursor for PrPSc.The essence of prion biosynthesis is based on the protein-only hypothesis that postulates self-perpetuating replication of the prion protein.1 Although the exact replication process remains elusive, the template-assisted conversion model proposes an idea that PrPSc serves as a template to convert α-helices of PrPC into the β-sheets of PrPSc during prion replication.7 According to many lines of evidence, there exists an unidentified auxiliary factor, designated protein X, which favorably interacts with PrPC to produce a thermodynamically stable intermediate conformation called PrP*.8 By introducing PrPSc to a host, dimers will readily form between PrP* and PrPSc. This interaction induces PrP* to take on the conformation of PrPSc and results in a complex consisting of the template and the newly formed PrPSc molecules. Once the dimer disassociates protein X and the two PrPSc molecules are released and allowed to continue replicating in an exponential fashion. Recent observations that infectious material can be generated in vitro using recombinant PrP have authenticated the protein-only hypothesis.9,10 However, the infectivity of these in vitro generated PrPSc products is lower than that of brain-derived PrPSc, leading to the possibility that insufficient levels of the unidentified auxiliary factor are the limiting factor for these in vitro assays.To date, non-mammalian chaperone proteins, sulfated glycans and certain polyanionic macromolecules, such as RNA, have shown to increase the level of PrPSc in several different in vitro assays.1114 However, defining these molecules as cellular auxiliary factors that promote the conversion of PrPC to PrPSc has been prevented for several reasons. First, overexpression of yeast heat shock protein Hsp 104 in transgenic mice does not modulate the incubation time of disease and PrPSc accumulation upon prion inoculation.15 Although mammalian Hsp 70 is upregulated in humans and animals with prion diseases,16,17 it participates in downregulation, but not upregulation, of PrPSc accumulation.18 Second, the effect of sulfated glycans on PrPSc formation has been inconsistent1113 and certain sulfated glycans inhibit PrPSc propagation in animals and cultured cells.1921 Lastly, although RNA is able to increase PrPSc propagation and induce the formation of PrPSc de novo from purified PrPC in the absence of a PrPSc seed,22 its specificity is in question. Thus, an auxiliary factor that positively assists PrPSc replication and is composed of a mammalian cellular protein remains to be identified.Our approach to identify an auxiliary factor relies on the idea that the auxiliary factor interacts with PrPC as proposed in the protein X hypothesis.7 Therefore, we considered PrP ligands as the best candidates for this unidentified factor. By screening a phage display cDNA expression library from ScN2a cells, we identified kringle domains of plasminogen that interact with recombinant PrP folded in an α-helical conformation (α-PrP).23 In vitro binding assays showed that interaction between plasminogen and α-PrP that represents the conformational state of PrPC was enhanced by the introduction of a dominant negative mutation and the presence of the basic N-terminal sequences in PrP.23 Interaction of PrPC and plasminogen was further confirmed by the ability of plasminogen and its kringle domains to readily interact with α-PrP.2429 However, despite greater interaction with α-PrP, plasminogen also interacted with PrP in β-sheet conformations.23 Prior to our study, it was shown that PrPSc was immunoprecipitated with beads linked to plasminogen, its first three kringle domains [K(1+2+3)], and more recently the repeating YRG motif found within the plasminogen kringle domains.3033 However, the ability of plasminogen to bind to PrPSc was dependent on conditions of the lipid rafts and plasminogen was actually associated with PrPC in the intact lipid rafts.34To determine the functional relevance of this interaction for PrPSc replication, we explored whether plasminogen enhances PrPSc propagation using cell culture models and the in vitro PrP conversion assay, termed protein misfolding cyclic amplification (PMCA).35 The addition of plasminogen in PMCA resulted in the generation of significantly more PrPSc in a concentration-dependent manner (Fig. 1A), suggesting that plasminogen stimulates the conversion of PrPC to PrPSc. Indeed, our kinetic studies showed that plasminogen accelerates the rate of PrPSc generation during the early stages of the in vitro PrP conversion reaction (reviewed in ref. 35). In contrast, the addition of plasminogen in PMCA lacking either PrPC or PrPSc failed to generate PrPSc (Fig. 1B and C). These results suggest that both PrPC and PrPSc are required for PrPSc replication stimulated by plasminogen and that plasminogen facilitates neither spontaneous PrP conversion nor PrPSc augmentation through aggregating pre-existing PrPSc. Incubation of plasminogen with pre-formed PrPSc followed by treatments with proteinase K failed to either increase or decrease the PrPSc level compared to controls (Fig. 1D and E), suggesting that plasminogen is not involved in stabilization of PrPSc, enhancement of PrPSc resistance to protease or promotion of PrPSc binding to the membrane for western blotting. The activity to stimulate PrP conversion was a specific property of plasminogen and was not shared with other proteins such as a known PrP ligand and proteins abundantly found in the serum or at the extracellular matrices where plasminogen is present (reviewed in ref. 35). In addition, we found that the ability of plasminogen to assist in PrPSc propagation is preserved in its kringle domains (reviewed in ref. 35). Furthermore, the activity associated with plasminogen under cell-free conditions was reproduced in cell culture models. Plasminogen and its kringle domains increased PrPSc propagation in cultured cells chronically infected with mouse-adapted scrapie or chronic wasting disease prions (Fig. 2A–D). This suggests that the activity of plasminogen in PrPSc replication has biological relevance.Open in a separate windowFigure 1The role of plasminogen in PrPSc propagation. The effect of plasminogen (Plg) was assessed by PMCA using normal brain material supplemented with or without 0.5 µM human Glu-Plg (A–D) or using Plg-deficient (Plg-/-) brain material (F and G). Pre- (−) and post- (+) PMCA samples were treated with proteinase K (PK) and analyzed by western blotting. Seeds for PMCA were diluted either as indicated or 1:900 (G) −8,100 (F). (A) Stimulation of PrPSc propagation by Plg. (B) Plg-supplemented PMCA in the absence of SBH seeds. (C) Plg-supplemented PMCA in the absence of NBH. (D) Comparison of PrPSc levels in Plg-supplemented PMCA samples (during) vs. PMCA samples only incubated with Plg prior to PK digestion (after). (E) Comparison of PrPSc levels of ScN2a cell lysate after incubation with or without Plg prior to PK digestion. (F) PMCA with brain material of Plg-/- mice and genetically unaltered littermate controls (C). (G) Restoration of PMCA using Plg-/- brain material with Plg-supplementation. NBH, normal brain homogenate; SBH, sick brain homogenate; PrPKOBH, brain homogenate of PrPC-deficient mice; CL, cell lysate. Reproduced with permission from The FASEB Journal, Mays and Ryou 2010.35Open in a separate windowFigure 2PrPSc propagation increased by plasminogen in prion-infected cells. (A) The levels of PrP in ScN2a cells incubated with 0–0.5 µM human Glu-plasminogen (Plg) for two days. (B) The levels of PrP in ScN2a cells incubated with 0, 0.1 and 1.0 µM Plg or the first three kringle domains of Plg [K(1+2+3)] for six days. (C) The levels of 3F4-tagged PrPC and nascent PrPSc formation in ScN2a cells transiently transfected (Tfx) with plasmids encoding the 3F4-tagged PrP gene (PrP-3F4) and with an empty vector (mock). The transfected cells were treated with 0 or 1 µM K (1+2+3) for three days. (D) The levels of PrP in Elk21+ cells incubated with 0 and 0.5 µM Plg for two days. PrP was detected by anti-PrP antibody D13 (A and B), 3F4 (C) or 6H4 (D) before (−) and after (+) PK treatment. Reproduced by permission of the The FASEB Journal, Mays and Ryou 2010.35Corresponding to the results that plasminogen positively assists in PrPSc replication by stimulating conversion of PrPC to PrPSc, depletion of plasminogen from the PMCA reaction by using brain material derived from plasminogen-deficient mice restricted PrPSc replication to the basal level (Fig. 1F). Supplementation with plasminogen for PMCA using plasminogen-deficient brain homogenate restored PrPSc propagation to levels equivalent to that of control PMCA in which only brain material of their non-genetically altered littermates was used (Fig. 1G). Furthermore, structural destabilization of plasminogen affected the activity of plasminogen that enhances PrPSc propagation. Because intact disulfide bonds are critical in maintaining structural integrity and the binding activity of plasminogen, we conducted PMCA supplemented with either structurally intact or modified plasminogen to investigate the functionality of plasminogen. The result showed that plasminogen pre-treated sequentially with chemical agents that disrupt disulfide bonds and modify free sulfhydryl groups failed to stimulate PrPSc propagation (reviewed in ref. 35). In addition, we showed that interference with the plasminogen-PrP interaction using L-lysine abolished the plasminogen-mediated stimulation of PrPSc propagation in PMCA (reviewed in ref. 35). Because previous observations in immunoprecipitation30 and ELISA binding assays23 described that L-lysine specifically inhibited formation of the PrP-plasminogen complex, the presence of L-lysine in PMCA is considered to saturate the lysine binding motifs of kringle domains, which competitively prevents the kringle domains of plasminogen from interacting with PrP and inhibited PrP conversion. These various inhibition studies of PrPSc propagation provides confirmatory evidence that plasminogen plays an important role in PrPSc replication.Despite our progress in understanding the role of plasminogen in PrPSc propagation, we are still unable to address mechanistic details by which plasminogen exerts its function. In fact, plasminogen shares a number of the expected characteristics of the previously proposed auxiliary factor, although there are minor but distinctive discrepancies in their properties (summarized in Fig. 3). First, plasminogen may control conformational rearrangement of PrPC to PrP*, resembling a molecular chaperone. This scenario is identical to the protein X hypothesis, in which plasminogen replaces protein X to assist the conversion process. Second, plasminogen may promote aggregation of PrPSc already converted from PrPC. This will result in efficient formation of PrPSc multimers. Third, plasminogen may stabilize the pre-existing PrPSc aggregates so that stabilized aggregates are better protected from degradation or processing by the intrinsic clearance mechanism. This will result in increased accumulation and stability of PrPSc. In the second and third scenarios, the function of plasminogen is not involved in PrPC or its conversion process, but limited to the interaction with pre-formed PrPSc. Fourth, plasminogen may play a role as a scaffolding molecule that simply brings both PrPC and PrPSc together within a proximity. This will increase the frequency of interaction between PrPC and PrPSc for conversion. This scenario is distinguished from the other three by postulating plasminogen interaction with both isoforms of PrP. In contrast, plasminogen is assumed to interact with only PrPC or PrPSc in other cases. Although accumulating data including our recent studies provide critical pieces of evidence to envision described mechanistic insights, it is still premature to conclude the mechanism involved in plasminogen-mediated stimulation of PrPSc propagation.Open in a separate windowFigure 3Plausible mechanisms for plasminogen to enhance PrPSc propagation. Plasminogen may stimulate PrPSc propagation via conformational alteration of PrPC to PrP* (i), enhancement of PrPSc aggregation (ii), stabilization of pre-exisiting PrPSc aggregates (iii) or scaffolding to gather PrPC and PrPSc together (iv).

Table 1

Properties of plasminogen as an auxiliary factor for PrPSc propagation
Protein XPlasminogen
CompositionProtein; macromoleculesProtein
ExpressionBrain; neuron-specificBrain; neuroblastoma cell line, expressed more in the non-CNS
Subcellular localizationPlasma membrane; lipid raftsExtracellular matrix; lipid rafts
Association with diseaseIncreased protein levels in the sera of human patient with CJD
InteractionOnly with PrPCPrPSc, α-PrP, β-PrP
Binding sites on PrP
  • Q167, Q171, V214 and Q218 in the β2-α2 loop (164–174) and C-terminus (215–223)
  • Dominant negative mutations on the protein X binding sites such as Q167R and Q218K inhibited PrPSc formation in the cultured cells and prion transmission in transgenic mice
  • K23, K24 and K27 in the N-terminus: deletion of the N-terminal lysine cluster reduced dominant negative inhibition of PrPSc formation
  • Binds to N-terminally truncated PrP (89–230)
  • Increased binding activity to full-length PrP (23–230)
  • Increased binding activity to PrP with Q218K dominant negative mutation
  • The second kringle domain of plasminogen binds to the β2-α2 loop in silico
  • Binds to both lysine clusters located to the N-terminus (23–27) and middle (100–109) of PrP
Species specificity
  • Homotypic interaction with PrPC
  • Mouse protein X has lower binding affinity to human PrPC in the studies with transgenic mice
  • Unknown
  • Human plasminogen binds to human, mouse, bovine and ovine PrP
  • Human and bovine plasminogen converts mouse PrPC to PrPSc in PMCA
FunctionAn auxiliary role in conversion of PrPC to PrPScEnhances PrPSc propagation facilitated by PrP conversion in PMCA
Action mechanismBinds to PrPC and alters PrPC into PrP* that interacts with PrPSc for conversionUnknown
Open in a separate windowCNS, central nervous system; CJD, Creutzfeldt-Jakob disease; α-PrP, PrP in an α-helical conformation; β-PrP, PrP in an β-sheet conformation; PMCA, protein misfolding cyclic amplification.It is essential to address a few additional issues of PrPSc propagation stimulated by plasminogen aside from the mechanistic details. First, it is necessary to confirm the authenticity of PrPSc generated in the aid of plasminogen as a bona fide infectious agent. In addition, it would be interesting to compare the structural signatures of PrPSc generated in our study and found the prion seeds. This study may provide a clue to establish a structure-infectivity relationship for PrPSc. Furthermore, the ability to repeat our PMCA results in a similar assay reconstituted with defined components would clarify whether plasminogen directly contributes to PrPSc propagation. Finally, the contribution of plasminogen to the species barrier by controlling the compatibility between the host PrPC and prion strains should be determined. Collectively, these studies will be useful to identify an intricate regulatory role for plasminogen during PrPSc replication and prion transmission.Plasminogen has shown that it stimulates PrPSc propagation in the cell-free assays and cultured cells, while its role in animal models has not been obviously clarified. In opposition to the anticipated outcomes that the course of prion disease in plasminogen-deficient animals would be delayed, intracerebral prion infection of two independent mouse lines deficient in plasminogen resulted in either unchanged or accelerated disease progression when compared to the appropriate wild-type controls.36,37 These results do not support each other and there is no good interpretation to reconcile their incongruence. However, the discrepancy between the expectation and the actual outcomes of the previous studies can be caused by the intrinsic health problems associated with the mouse lines used for the studies,3840 which raises a question for the credibility of the model system. Some clinical phenotypes of confounding health problems in plasminogen-deficient mice overlap with the typical clinical signs of prion disease in mice. Furthermore, the drastically shortened life expectancy of plasminogen-deficient mice coincides with the incubation periods of mice inoculated with prion strains used in the previous studies. Lastly, the health problems of plasminogen-deficient mice could exacerbate the progression of the course of disease in mice inoculated with prions. Thus, either unchanged or shortened incubation periods of prion-inoculated plasminogen-deficient mice may not solely reflect the effect of plasminogen deficiency related to prion replication. Alternatively, the reason for observed outcomes from the in vivo models may be associated with the presence of functionally redundant proteins for plasminogen even under its absence. Because kringle domains of plasminogen share a well-conserved structure with those of other proteins such as tissue-type plasminogen activator, hepatocyte growth factor and apolipoprotein (a),41 it is possible to postulate that other proteins that contain kringle domains can functionally replace plasminogen. Therefore, an animal model that circumvents the drawbacks associated with the current models is needed to address the relevance of plasminogen in prion replication in vivo.Based on our study that identified plasminogen as the first cellular protein cofactor for PrPSc propagation, we anticipate an intriguing opportunity to develop future diagnosis and therapeutic intervention for prion disease. Previously, the identity of a proposed auxiliary factor was obscure so most approaches either targeted PrP isoforms or were empirical.42 Our study suggests that plasminogen is a novel target to interfere with PrPSc replication. Therefore, a variety of strategies that either deplete plasminogen or interfere with the formation of PrP-plasminogen complexes would work for development of a novel therapeutic intervention for prion disease. For instance, RNA interference of plasminogen expression, monoclonal anti-plasminogen antibody to block plasminogen binding to PrP, L-lysine that saturates the binding sites of plasminogen to PrP, and chemical agents that destabilize the structure of plasminogen are potential strategies for this purpose.In conclusion, plasminogen is a PrP ligand with the ability to stimulate PrPSc propagation. Our findings are indispensable in gaining a better understanding of the underlying mechanism for PrPSc propagation, while unveiling a new therapeutic target for prion disease.  相似文献   

12.
13.
PrPSc accumulation in myocytes from sheep incubating natural scrapie   总被引:1,自引:0,他引:1  
Because variant Creutzfeldt-Jakob disease (vCJD) in humans probably results from consumption of products contaminated with tissue from animals with bovine spongiform encephalopathy, whether infectious prion protein is present in ruminant muscles is a crucial question. Here we show that experimentally and naturally scrapie-affected sheep accumulate the prion protein PrP(Sc) in a myocyte subset. In naturally infected sheep, PrP(Sc) is detectable in muscle several months before clinical disease onset. The relative amounts of PrP(Sc) suggest a 5,000-fold lower infectivity for muscle as compared to brain.  相似文献   

14.
15.
Accumulation of prion protein (PrPSc) in the central nervous system is the hallmark of transmissible spongiform encephalopathies. However, in some of these diseases such as scrapie or chronic wasting disease, the PrPSc can also accumulate in other tissues, particularly in the lymphoreticular system. In recent years, PrPSc in organs other than nervous and lymphoid have been described, suggesting that distribution of this protein in affected individuals may be much larger than previously thought. In the present study, 11 non-nervous/non-lymphoid organs from 16 naturally scrapie infected sheep in advanced stages of the disease were examined for the presence of PrPSc. Fourteen infected sheep were of the ARQ/ARQ PRNP genotype and 2 of the VRQ/VRQ, where the letters A, R, Q, and V represent the codes for amino-acids alanine, arginine, glutamine and valine, respectively. Adrenal gland, pancreas, heart, skin, urinary bladder and mammary gland were positive for PrPSc by immunohistochemistry and IDEXX HerdChek scrapie/BSE Antigen EIA Test in at least one animal. Lung, liver, kidney and skeletal muscle exhibited PrPSc deposits by immunohistochemistry only. To our knowledge, this is the first report regarding the presence of PrPSc in the heart, pancreas and urinary bladder in naturally acquired scrapie infections. In some other organs examined, in which PrPSc had been previously detected, PrPSc immunolabeling was observed to be associated with new structures within those organs. The results of the present study illustrate a wide dissemination of PrPSc in both ARQ/ARQ and VRQ/VRQ infected sheep, even when the involvement of the lymphoreticular system is scarce or absent, thus highlighting the role of the peripheral nervous system in the spread of PrPSc.  相似文献   

16.
一种基于连续PMCA的PrPSc体外扩增方法的建立   总被引:1,自引:0,他引:1  
为建立一种基于蛋白质错误折叠循环扩增(PMCA)的体外稳定扩增方法以观察PrPSc是否能在体外连续传代,我们分别制备了正常仓鼠和羊瘙痒病因子263K感染的发病仓鼠的全脑匀浆,将两种脑匀浆以不同体积比混合后,分别进行144个循环的直接PMCA和每轮48个循环、共8轮的连续PMCA,用Western blot对PrPSc的扩增情况进行检测.结果显示,与常规的直接PMCA方法相比,连续PMCA能更有效地使低浓度的PrPSc扩增到可检出的水平,表明连续PMCA可以支持羊瘙痒因子263K在体外长期稳定的复制.连续PMCA方法是一种体外高效地扩增PrPSc的方法,有潜力成为一种Prion体外培养方法,用于研究Prion错误折叠和复制机制,以及检测脑组织、外周组织和体液样品中的微量PrPSc.  相似文献   

17.
Prion diseases are emerging infectious disorders that affect several mammalian species including humans. The transmissible agent is comprised of PrPSc, a misfolded isoform of the normal host-encoded prion protein PrPC. Immunodetection of PrPSc is often utilized for prion disease diagnosis and tracking spread of the infectious agent through the host. We have developed a rapid, high-throughput 96-well immunoassay, which is specific for the detection of PrPSc. This assay has PrPSc detection limits similar to western blot and is advantageous because of its comparatively shorter running time, smaller start-up and operation costs and large sample capacity.Key words: prion disease, immunodetection, PrPSc  相似文献   

18.
Sulfated glycosaminoglycans (GAGs) and sulfated glycans inhibit formation of the abnormal isoform of prion protein (PrPSc) in prion-infected cells and prolong the incubation time of scrapie-infected animals. Sulfation of GAGs is not tightly regulated and possible sites of sulfation are randomly modified, which complicates elucidation of the fundamental structures of GAGs that mediate the inhibition of PrPSc formation. To address the structure-activity relationship of GAGs in the inhibition of PrPSc formation, we screened the ability of various regioselectively O-sulfated glycopyranosides to inhibit PrPSc formation in prion-infected cells. Among the glycopyranosides and their polymers examined, monomeric 4-sulfo-N-acetyl-glucosamine (4SGN), and two glycopolymers, poly-4SGN and poly-6-sulfo-N-acetyl-glucosamine (poly-6SGN), inhibited PrPSc formation with 50% effective doses below 20 microg/ml, and their inhibitory effect became more evident with consecutive treatments. Structural comparisons suggested that a combination of an N-acetyl group at C-2 and an O-sulfate group at either O-4 or O-6 on glucopyranoside might be involved in the inhibition of PrPSc formation. Furthermore, polymeric but not monomeric 6SGN inhibited PrPSc formation, suggesting the importance of a polyvalent configuration in its effect. These results indicate that the synthetic sulfated glycosides are useful not only for the analysis of structure-activity relationship of GAGs but also for the development of therapeutics for prion diseases.  相似文献   

19.
In prion diseases the endogenous prion protein (PrPC) is converted into an abnormally folded isoform, denoted PrPSc, which represents the major component of infectious scrapie prions. The mechanism of the conversion is largely unknown, but the conversion is thought to occur after PrPC has reached the plasma membrane. Here we show that exogenous administration of the cationic lipopolyamine DOSPA interfered with the accumulation of PrPSc in scrapie-infected neuroblastoma cells. Structural analysis of the compounds tested revealed that inhibition of PrPSc was specific for lipids with a headgroup composed of the polyamine spermine and a quarternary ammonium ion between the headgroup and the lipophilic tail. The cationic lipopolyamine DOSPA induced the cellular degradation of preexisting PrPSc aggregates within 12 hours and interfered with the de novo synthesis of PrPSc. Biosynthesis of PrPC, or the assembly of sphingolipid-cholesterol microdomains (rafts) on the plasma membrane, were not affected by this inhibitor. After removal of DOSPA and replating into normal medium propagation of PrPSc commenced, although initially at a reduced rate. Incubation of ScN2a cells in free spermidine had no inhibitory effect on the accumulation of PrPSc. Our results indicate that membrane targeting of a small polyamine molecule creates a potent inhibitor of PrPSc propagation and offers the possibility to degrade preexisting PrPSc aggregates in living cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号