首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scrapie isoform of the prion protein, PrP(Sc), is the only identified component of the infectious prion, an agent causing neurodegenerative diseases such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Following proteolysis, PrP(Sc) is trimmed to a fragment designated PrP 27-30. Both PrP(Sc) and PrP 27-30 molecules tend to aggregate and precipitate as amyloid rods when membranes from prion-infected brain are extracted with detergents. Although prion rods were also shown to contain lipids and sugar polymers, no physiological role has yet been attributed to these molecules. In this work, we show that prion infectivity can be reconstituted by combining Me(2)SO-solubilized PrP 27-30, which at best contained low prion infectivity, with nonprotein components of prion rods (heavy fraction after deproteination, originating from a scrapie-infected hamster brain), which did not present any infectivity. Whereas heparanase digestion of the heavy fraction after deproteination (originating from a scrapie-infected hamster brain), before its combination with solubilized PrP 27-30, considerably reduced the reconstitution of infectivity, preliminary results suggest that infectivity can be greatly increased by combining nonaggregated protease-resistant PrP with heparan sulfate, a known component of amyloid plaques in the brain. We submit that whereas PrP 27-30 is probably the obligatory template for the conversion of PrP(C) to PrP(Sc), sulfated sugar polymers may play an important role in the pathogenesis of prion diseases.  相似文献   

2.
Prion diseases are fatal, transmissible neurodegenerative diseases of the central nervous system. An abnormally protease-resistant and insoluble form (PrP(Sc)) of the normally soluble protease-sensitive host prion protein (PrP(C)) is the major component of the infectious prion. During the course of prion disease, PrP(Sc) accumulates primarily in the lymphoreticular and central nervous systems. Recent studies have shown that co-infection of prion-infected fibroblast cells with the Moloney murine leukemia virus (Mo-MuLV) strongly enhanced the release and spread of scrapie infectivity in cell culture, suggesting that retroviral coinfection might significantly influence prion spread and disease incubation times in vivo. We now show that another retrovirus, the murine leukemia virus Friend (F-MuLV), also enhanced the release and spread of scrapie infectivity in cell culture. However, peripheral co-infection of mice with both Friend virus and the mouse scrapie strain 22L did not alter scrapie disease incubation times, the levels of PrP(Sc) in the brain or spleen, or the distribution of pathological lesions in the brain. Thus, retroviral co-infection does not necessarily alter prion disease pathogenesis in vivo, most likely because of different cell-specific sites of replication for scrapie and F-MuLV.  相似文献   

3.
4.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

5.
The conversion of a normal glycoprotein, prion protein (PrP(C)), to its abnormal protease-resistant isoform (PrP(Sc)) seems to be one of the main factors underlying the pathogenesis of spongiform encephalopathies. There are many studies indicating that PrP interacts with glycosaminoglycans, and we exploited this interaction to develop a sensitive solid phase assay for detection of both PrP forms. Glycosaminoglycans, such as chondroitin sulfate and heparin, were immobilized by their negative charge to enzyme-linked immunosorbent assay (ELISA) plate wells activated by glutaraldehyde and spermine. PrP in the samples examined (recombinant PrP or tissue homogenate) was allowed to interact with glycans. The interaction of recombinant PrP was more efficient against immobilized chondroitin sulfate of type A, and a linear correlation with concentration was demonstrated. From this curve, the concentration of each one of the PrP isoforms in biological samples can be determined. In addition, and taking into account that glycosylation of prion protein is species specific, we used similarly activated ELISA plate wells to determine different PrP glycoforms. A monoclonal antibody against PrP was immobilized, and PrP present in the samples (brain homogenates) was bound and visualized by various lectins. The most interesting outcome of the study is the differential binding of ricinus communis agglutinin I to the normal and scrapie brain homogenates. Dattura stramonium lectin and wheat germ agglutinin seem to bind almost equally to both samples, and all three have an increased sensitivity to PrP(Sc) after proteinase K digestion.  相似文献   

6.
The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.  相似文献   

7.
Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.  相似文献   

8.
The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.  相似文献   

9.
The normal cellular prion protein (PrP(C)) is a glycoprotein with two highly conserved potential N-linked glycosylation sites. All prion diseases, whether inherited, infectious or sporadic, are believed to share the same pathogenic mechanism that is based on the conversion of the normal cellular prion protein (PrP(C)) to the pathogenic scrapie prion protein (PrP(Sc)). However, the clinical and histopathological presentations of prion diseases are heterogeneous, depending not only on the strains of PrP(Sc) but also on the mechanism of diseases, such as age-related sporadic vs. infectious prion diseases. Accumulated evidence suggests that N-linked glycans on PrP(C) are important in disease phenotype. A better understanding of the nature of the N-linked glycans on PrP(C) during the normal aging process may provide new insights into the roles that N-linked glycans play in the pathogenesis of prion diseases. By using a panel of 19 lectins in an antibody-lectin enzyme-linked immunosorbent assay (ELISA), we found that the lectin binding profiles of PrP(C) alter significantly during aging. There is an increasing prevalence of complex oligosaccharides on the aging PrP(C), which are features of PrP(Sc). Taken together, this study suggests a link between the glycosylation patterns on PrP(C) during aging and PrP(Sc).  相似文献   

10.
Prions replicate in the host cell by the self-propagating refolding of the normal cell surface protein, PrP(C), into a beta-sheet-rich conformer, PrP(Sc). Exposure of cells to prion-infected material and subsequent endocytosis can sometimes result in the establishment of an infected culture. However, the relevant cell surface receptors have remained unknown. We have previously shown that cellular heparan sulfates (HS) are involved in the ongoing formation of scrapie prion protein (PrP(Sc)) in chronically infected cells. Here we studied the initial steps in the internalization of prions and in the infection of cells. Purified prion "rods" are arguably the purest prion preparation available. The only proteinaceous component of rods is PrP(Sc). Mouse neuroblastoma N2a, hypothalamus GT1-1, and Chinese hamster ovary cells efficiently bound both hamster and mouse prion rods (at 4 degrees C) and internalized them (at 37 degrees C). Treating cells with bacterial heparinase III or chlorate (a general inhibitor of sulfation) strongly reduced both binding and uptake of rods, whereas chondroitinase ABC was inactive. These results suggested that the cell surface receptor of prion rods involves sulfated HS chains. Sulfated glycans inhibited both binding and uptake of rods, probably by competing with the binding of rods to cellular HS. Treatments that prevented endocytosis of rods also prevented the de novo infection of GT1-1 cells when applied during their initial exposure to prions. These results indicate that HS are an essential part of the cellular receptor used both for prion uptake and for cell infection. Cellular HS thus play a dual role in prion propagation, both as a cofactor for PrP(Sc) synthesis and as a receptor for productive prion uptake.  相似文献   

11.
Prion diseases are associated with the accumulation of an abnormal isoform of host-encoded prion protein (PrP(Sc)). A number of prion strains can be distinguished by "glycotyping" analysis of the respective deposited PrP(Sc) compound. In this study, the long-term proteinase K resistance, the molecular mass, and the localization of PrP(Sc) deposits derived from conventional and transgenic mice inoculated with 11 different BSE and scrapie strains or isolates were examined. Differences were found in the long-term proteinase K resistance (50 microg/ml at 37 degrees C) of PrP(Sc). For example, scrapie strain Chandler or PrP(Sc) derived from field BSE isolates were destroyed after 6 hr of exposure, whereas PrP(Sc) of strains 87V and ME7 and of the Hessen1 isolate were extremely resistant to proteolytic cleavage. Nonglycosylated, proteinase K-treated PrP(Sc) of BSE isolates and of scrapie strain 87V exhibited a 1-2 kD lower molecular mass than PrP(Sc) derived from all other scrapie strains and isolates. With the exception of strain 87V, PrP(Sc) was generally deposited in the cerebrum, cerebellum, and brain stem of different mouse lines at comparable levels. Long-term proteinase resistance, molecular mass, and the analysis of PrP(Sc) deposition therefore provide useful criteria in discriminating prion strains and isolates (e.g., BSE and 87V) that are otherwise indistinguishable by the PrP(Sc) "glycotyping" technique.  相似文献   

12.
The prion agent has been detected in skeletal muscle of humans and animals with prion diseases. Here we report scrapie infection of murine C2C12 myoblasts and myotubes in vitro following coculture with a scrapie-infected murine neuroblastoma (N2A) cell line but not following incubation with a scrapie-infected nonneuronal cell line or a scrapie brain homogenate. Terminal differentiation of scrapie-infected C2C12 myoblasts into myotubes resulted in an increase in the expression of the disease-specific prion protein, PrP(Sc). The amount of scrapie infectivity or PrP(Sc) in C2C12 myotubes was comparable to the levels found in scrapie-infected N2A cells, indicating that a high level of infection was established in muscle cells. Subclones of scrapie-infected C2C12 cells produced high levels of PrP(Sc) in myotubes, and the C-terminal C2 polypeptide fragment of PrP(Sc) was found based on deglycosylation and PrP(Sc)-specific immunoprecipitation of cell lysates. This is the first report of a stable prion infection in muscle cells in vitro and of a long-term prion infection in a nondividing, differentiated peripheral cell type in culture. These in vitro studies also suggest that in vivo prion infection of skeletal muscle requires contact with prion-infected neurons or, possibly, nerve terminals.  相似文献   

13.
Previous studies using post-mortem human brain extracts demonstrated that PrP in Creutzfeldt-Jakob disease (CJD) brains is cleaved by a cellular protease to generate a C-terminal fragment, referred to as C2, which has the same molecular weight as PrP-(27-30), the protease-resistant core of PrP(Sc) (1). The role of this endoproteolytic cleavage of PrP in prion pathogenesis and the identity of the cellular protease responsible for production of the C2 cleavage product has not been explored. To address these issues we have taken a combination of pharmacological and genetic approaches using persistently infected scrapie mouse brain (SMB) cells. We confirm that production of C2 is the predominant cleavage event of PrP(Sc) in the brains of scrapie-infected mice and that SMB cells faithfully recapitulate the diverse intracellular proteolytic processing events of PrP(Sc) and PrP(C) observed in vivo. While increases in intracellular calcium (Ca(2+)) levels in prion-infected cell cultures stimulate the production of the PrP(Sc) cleavage product, pharmacological inhibitors of calpains and overexpression of the endogenous calpain inhibitor, calpastatin, prevent the production of C2. In contrast, inhibitors of lysosomal proteases, caspases, and the proteasome have no effect on C2 production in SMB cells. Calpain inhibition also prevents the accumulation of PrP(Sc) in SMB and persistently infected ScN2A cells, whereas bioassay of inhibitor-treated cell cultures demonstrates that calpain inhibition results in reduced prion titers compared with control-treated cultures assessed in parallel. Our observations suggest that calpain-mediated endoproteolytic cleavage of PrP(Sc) may be an important event in prion propagation.  相似文献   

14.
Prion diseases are characterized by accumulation of misfolded prion protein (PrP(Sc)), and neuronal death by apoptosis. Here we show that nanomolar concentrations of purified PrP(Sc) from mouse scrapie brain induce apoptosis of N2A neuroblastoma cells. PrP(Sc) toxicity was associated with an increase of intracellular calcium released from endoplasmic reticulum (ER) and up-regulation of several ER chaperones. Caspase-12 activation was detected in cells treated with PrP(Sc), and cellular death was inhibited by overexpression of a catalytic mutant of caspase-12 or an ER-targeted Bcl-2 chimeric protein. Scrapie-infected N2A cells were more susceptible to ER-stress and to PrP(Sc) toxicity than non-infected cells. In scrapie-infected mice a correlation between caspase-12 activation and neuronal loss was observed in histological and biochemical analyses of different brain areas. The extent of prion replication was closely correlated with the up-regulation of ER-stress chaperone proteins. Similar results were observed in humans affected with sporadic and variant Creutzfeldt-Jakob disease, implicating for the first time the caspase-12 dependent pathway in a neurodegenerative disease in vivo, and thus offering novel potential targets for the treatment of prion disorders.  相似文献   

15.
BACKGROUND: When a cell is infected with scrapie prions, newly synthesized molecules of the prion protein PrP(C) are expressed at the cell surface and may subsequently be converted to the abnormal form PrP(Sc). In an experimental scrapie infection of an animal, the initial innoculum of PrP(Sc) is cleared relatively rapidly, and the subsequent propagation of the infection depends on the ability of infected cells to convert uninfected target cells to stable production of PrP(Sc). The mechanism of such cell-based infection is not understood. RESULTS: We have established a system in dissociated cell culture in which scrapie-infected mouse SMB cells are able to stably convert genetically marked target cells by coculture. After coculture and rigorous removal of SMB cells, the target cells express PrP(Sc) and also incorporate [35S]methionine into PrP(Sc). The extent of conversion was sensitive to the ratio of the two cell types, and conversion by live SMB required 2500-fold less PrP(Sc) than conversion by a cell-free prion preparation. The conversion activity of SMB cells is not detectable in conditioned medium and apparently depends on close proximity or contact, as evidenced by culturing the SMB and target cells on neighboring but separate surfaces. SMB cells were killed by fixation in aldehydes, followed by washing, and were found to retain significant activity at conversion of target cells. CONCLUSIONS: Cell-mediated infection of target cells in this culture system is effective and requires significantly less PrP(Sc) than infection by a prion preparation. Several lines of evidence indicate that it depends on cell contact, in particular, the activity of aldehyde-fixed infected cells.  相似文献   

16.
Conversion of cellular prion protein (PrP(C)) into a pathological conformer (PrP(Sc)) is thought to be promoted by PrP(Sc) in a poorly understood process. Here, we report that in wild-type mice, the expression of PrP(C) rendered soluble and dimeric by fusion to immunoglobulin Fcgamma (PrP-Fc(2)) delays PrP(Sc) accumulation, agent replication, and onset of disease following inoculation with infective prions. In infected PrP-expressing brains, PrP-Fc(2) relocates to lipid rafts and associates with PrP(Sc) without acquiring protease resistance, indicating that PrP-Fc(2) resists conversion. Accordingly, mice expressing PrP-Fc(2) but lacking endogenous PrP(C) are resistant to scrapie, do not accumulate PrP-Fc(2)(Sc), and do not transmit disease to others. These results indicate that various PrP isoforms engage in a complex in vivo, whose distortion by PrP-Fc(2) affects prion propagation and scrapie pathogenesis. The unique properties of PrP-Fc(2) suggest that soluble PrP derivatives may represent a new class of prion replication antagonists.  相似文献   

17.
Transmission studies in transmissible spongiform encephalopathies (TSEs) have become increasingly important due to the possible transmission of bovine spongiform encephalopathy to humans resulting in new variant Creutzfeldt-Jacob disease. The horizontal transmission of scrapie, a TSE of sheep, is poorly understood. Possible sources of horizontal transmission are the submandibular and parotid salivary glands. TSEs like natural sheep scrapie are characterized by the conversion of a normal protease sensitive prion protein, PrP(c), to an abnormal protease resistant prion protein, PrP(Sc). Since the presence of PrP(Sc) is an indicator of disease, the salivary glands of scrapie-infected sheep were examined for the presence of PrP(Sc). Although PrP(c) mRNA was detected in the salivary glands, PrP(Sc) was not found in the salivary glands of scrapie-infected sheep. These data suggest that the salivary glands are unlikely sources of horizontal transmission of natural sheep scrapie.  相似文献   

18.
The transmissible spongiform encephalopathies are characterized by conversion of a host protein, PrP(C) (cellular prion protein), to a protease-resistant isoform, PrP(Sc) (prion protein scrapie isoform). The importance of the highly flexible, N-terminal region of PrP has recently become more widely appreciated, particularly the biological activities associated with its metal ion-binding domain and its potential to form a poly(L-proline) II (PPII) helix. Circular dichroism spectroscopy of an N-terminal peptide, PrP(37-53), showed that the PPII helix is formed in aqueous buffer; as it also contains an Xaa-Pro-Gly consensus sequence, it may act as a substrate for the collagen-modifying enzyme prolyl 4-hydroxylase. Direct evidence for this modification was obtained by mass spectrometry and Edman sequencing in recombinant mouse PrP secreted from stably transfected Chinese hamster ovary cells. Almost complete conversion of proline to 4-hydroxyproline occurs specifically at residue Pro44 of this murine protein; the same hydroxylated residue was detected, at lower levels, in PrP(Sc) from the brains of scrapie-infected mice. Cation binding and/or post-translational hydroxylation of this region of PrP may regulate its role in the physiology and pathobiology of the cell.  相似文献   

19.
Prion sorption to soil is thought to play an important role in the transmission of scrapie and chronic wasting disease (CWD) via the environment. Sorption of PrP to soil and soil minerals is influenced by the strain and species of PrP(Sc) and by soil characteristics. However, the ability of soil-bound prions to convert PrP(c) to PrP(Sc) under these wide-ranging conditions remains poorly understood. We developed a semiquantitative protein misfolding cyclic amplification (PMCA) protocol to evaluate replication efficiency of soil-bound prions. Binding of the hyper (HY) strain of transmissible mink encephalopathy (TME) (hamster) prions to a silty clay loam soil yielded a greater-than-1-log decrease in PMCA replication efficiency with a corresponding 1.3-log reduction in titer. The increased binding of PrP(Sc) to soil over time corresponded with a decrease in PMCA replication efficiency. The PMCA efficiency of bound prions varied with soil type, where prions bound to clay and organic surfaces exhibited significantly lower replication efficiencies while prions bound to sand exhibited no apparent difference in replication efficiency compared to unbound controls. PMCA results from hamster and CWD agent-infected elk prions yielded similar findings. Given that PrP(Sc) adsorption affinity varies with soil type, the overall balance between prion adsorption affinity and replication efficiency for the dominant soil types of an area may be a significant determinant in the environmental transmission of prion diseases.  相似文献   

20.
The pathological prion protein PrP(Sc) is the only known component of the infectious prion. In cells infected with prions, PrP(Sc) is formed posttranslationally by the refolding of the benign cell surface glycoprotein PrP(C) into an aberrant conformation. The two PrP isoforms possess very different properties, as PrP(Sc) has a protease-resistant core, forms very large amyloidic aggregates in detergents, and is only weakly immunoreactive in its native form. We now show that prion-infected rodent brains and cultured cells contain previously unrecognized protease-sensitive PrP(Sc) varieties. In both ionic (Sarkosyl) and nonionic (n-octyl beta-D-glucopyranoside) detergents, the novel protease-sensitive PrP(Sc) species formed aggregates as small as 600 kDa, as measured by gel filtration. The denaturation dependence of PrP(Sc) immunoreactivity correlated with the size of the aggregate. The small PrP(Sc) aggregates described here are consistent with the previous demonstration of scrapie infectivity in brain fractions with a sedimentation coefficient as small as 40 S [Prusiner et al. (1980) J. Neurochem. 35, 574-582]. Our results demonstrate for the first time that prion-infected tissues contain protease-sensitive PrP(Sc) molecules that form low MW aggregates. Whether these new PrP(Sc) species play a role in the biogenesis or the pathogenesis of prions remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号