首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil inorganic nitrogen pools, net mineralization and net nitrification rates were compared during the dry season along a chronosequence of upland (terra firme) forest, 3-, 9- and 20-year-old pastures in the western Brazilian Amazon Basin state of Rondônia to investigate the influence of forest conversion to pasture on soil nitrogen cycles. Surface soil (0 to 10 cm) from forest had larger extractable inorganic nitrogen pools than pasture soils. In the forest, NO 3 pools equaled or exceeded NH 4 + pools, while pasture inorganic N pools consisted almost exclusively of NH 4 + . Rates of net N mineralization and net nitrification in seven -day laboratory incubations were higher in the seven - day forest than in the pastures. Net N mineralization rates did not differ significantly among different-aged pastures, but net nitrification rates were significantly lower in the 20-year-old pasture. Higher net N mineralization and net nitrification rates were measured in laboratory and in situ incubations of sieved soil, compared with in situ incubations of intact soil cores. Rates calculated in seven-day incubations were higher than determined by longer incubations. Sieving may increase N mineralization and/or decrease N immobilization compared with intact cores. We concluded that 7-day laboratory incubation of sieved soil was the most useful index for comparing N availability across the chronosequence of forest and pasture sites. High net nitrification rates in forest soils suggest a potential for NO 3 losses either through leaching or gaseous emissions.  相似文献   

2.
High rates of deforestation in the Brazilian Amazon have the potential to alter the storage and cycling of carbon (C) and nitrogen (N) across this region. To investigate the impacts of deforestation, we quantified total aboveground biomass (TAGB), aboveground and soil pools of C and N, and soil N availability along a land-use gradient in Rondônia, Brazil, that included standing primary forest, slashed primary and secondary forest, shifting cultivation, and pasture sites. TAGB decreased substantially with increasing land use, ranging from 311 and 399 Mg ha–1 (primary forests) to 63 Mg ha–1 (pasture). Aboveground C and N pools declined in patterns and magnitudes similar to those of TAGB. Unlike aboveground pools, soil C and N concentrations and pools did not show consistent declines in response to land use. Instead, C and N concentrations were strongly related to percent clay content of soils. Concentrations of NO3-N and NH4-N generally increased in soils following slash-and-burn events along the land-use gradient and decreased with increasing land use. Increasing land use resulted in marked declines in NO3-N pools relative to NH4-N pools. Rates of net nitrification and N-mineralization were also generally higher in postfire treatments relative to prefire treatments along the land-use gradient and declined with increasing land use. Results demonstrate the linked responses of aboveground C and N pools and soil N availability to land use in the Brazilian Amazon; steady reductions in aboveground pools along the land-use gradient were accompanied by declines in inorganic soil N pools and transformation rates.  相似文献   

3.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

4.
滇西北高原纳帕海湿地土壤氮矿化特征   总被引:8,自引:4,他引:4  
解成杰  郭雪莲  余磊朝  许静 《生态学报》2013,33(24):7782-7787
采用树脂芯原位培育法,研究了纳帕海沼泽、沼泽化草甸和草甸土壤氮的矿化特征。结果表明,铵态氮(NH4+-N)为沼泽、沼泽化草甸土壤中无机氮的主要存在形式,分别占无机氮含量的96.76%和75.24%,而硝态氮(NO3--N)为草甸土壤中无机氮的主要存在形式,占无机氮含量的58.77%。植物生长期内,纳帕海湿地土壤的净氮矿化速率表现为沼泽化草甸 > 草甸 > 沼泽,表明干湿交替的土壤环境更利于土壤氮矿化作用的进行,土壤中氮素有效性和维持植物可利用氮素的能力更强。整个生长季,沼泽和草甸土壤氮矿化为硝化作用,而沼泽化草甸土壤氮矿化为氨化作用。土壤硝态氮含量、有机质含量、碳氮比和含水量均对纳帕海沼泽、沼泽化草甸和草甸土壤的氮矿化产生显著影响。  相似文献   

5.
晋西北不同年限小叶锦鸡儿灌丛土壤氮矿化和硝化作用   总被引:1,自引:0,他引:1  
白日军  杨治平  张强  张训忠 《生态学报》2016,36(24):8008-8014
利用PVC管顶盖埋管法研究了晋西北黄土高原区小叶锦鸡儿人工灌丛不同定植年限(5,10,20,30,40a)土壤氮矿化与硝化速率的动态和净矿化与硝化总量。结果表明,⑴小叶锦鸡儿灌丛土壤无机氮主要以NO_-~3-N形式存在,不同生长年限相同月份的土壤硝态氮(NO-3-N)含量分别是铵态氮(NH+4-N)含量的1.5—15.4倍;⑵土壤氮素硝化速率和矿化速率随生长年限延长而加快,30年生时达到高峰,数值达40.2,44.1 mg m~(-2)d~(-1)。从季节性变化看,7—8月份是硝化速率和矿化速率快速增长期,30年生小叶锦鸡儿灌丛土壤硝化速率和矿化速率分别达到86.9,93.1 mg m~(-2)d~(-1),显著高于其它生长年限(P0.05);(3)土壤氮素硝化与矿化总量同样随小叶锦鸡儿生长年限延长而增加,30年生时达到最高,与5年生相比,分别增加了3.7和3.1倍。(4)5—10月份小叶锦鸡儿生长期内,各年限土壤全氮量的2.3%被矿化成无机氮,其中87%最终被转化成NO-3-N形式存在于土体中。  相似文献   

6.
The effects of select monoterpenes on nitrogen (N) mineralization and nitrification potentials were determined in four separate laboratory bioassays. The effect of increasing monoterpene addition was an initial reduction in NO3 -N production (nitrification inhibition), followed by a reduction in the sum of NH4 +-N and NO3 -N (inhibition of net N mineralization and net immobilization at high monoterpene additions. Monoterpenes could produce this pattern by inhibiting nitrification, reducing net N mineralization, enhancing immobilization of NO3 -N relative to NH4 +-N, and/or stimulating overall net immobilization of N by carbon-rich material.Initial monoterpene concentrations in the assay soils were about 5% of the added amount and were below detection after incubation in most samples.Potential N mineralization-immobilization, nitrification, and soil monoterpene concentrations were determined by soil horizon for four collections from a ponderosa pine (Pinus ponderosa) stand in New Mexico. Concentrations of monoterpenes declined exponentially with soil depth and varied greatly within a horizon. Monoterpene content of the forest floor was not correlated with forest floor biomass. Net N mineralization was inversely correlated with total monoterpene content of all sampled horizons. Nitrification was greatest in the mineral soil, intermediate in the F-H horizon, and never occurred in the L horizon. Nitrification in the mineral soil was inversely correlated with the amount of monoterpenes in the L horizon that contain terminal unsaturated carbon-carbon bonds (r 2 = 0.37, P 0.01). This pattern in the field corresponded to the pattern shown in the laboratory assays with increasing monoterpene additions.  相似文献   

7.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   

8.
Nitrate (NO3-N) in soil solution and streamwater can be an important vector of nitrogen (N) loss from forested watersheds, and nitrification is associated with negative consequences of soil acidification and eutrophication of aquatic ecosystems. The purpose of this study was to identify vegetation-mediated soil properties that may control potential net nitrification dynamics and to determine if net nitrification is a function of abiotic retention or biotic inhibition. We performed a soil inoculation and incubation study and analyzed a suite of soil chemical and biological properties in soils from a 40-year-old Appalachian hardwood forest and an adjacent 37-year-old Norway spruce forest converted from Appalachian hardwoods. Our results indicate that net NO3-N production was nine times higher in hardwood soil (mean = 183.51 mg N/kg/28 days) than in the spruce soil (mean = 18.97 mg N/kg/28 days) and differences in net NO3-N production were attributed to differences in soil substrate quality. Soil properties that were most strongly correlated with NO3-N production across vegetation types included total soil N, soil C:N ratio, oxalate concentration, and sulfate concentration. Establishment of a spruce monoculture in the central Appalachian hardwood ecoregion significantly altered N cycling, likely depleted soil N stores, increased soil acidity, and altered soil organic matter dynamics, thus leading to low net nitrification rates.  相似文献   

9.
Seasonal variation of dissolved organic C (DOC) and its effects on microbial activity and N dynamics were studied during two consecutive years in soils with different organic C concentrations (hilltop and hillslope) in a tropical deciduous forest of Mexico. We found that DOC concentrations were higher at the hilltop than at the hillslope soils, and in both soils generally decreased from the dry to the rainy season during the two study years. Microbial biomass and potential C mineralization rates, as well as dissolved organic N (DON) and NH4+ concentrations and net N immobilization were higher in soils with higher DOC than in soils with lower DOC. In contrast, net N immobilization and NH4+ concentration were depleted in the soil with lowest DOC, whereas NO3 concentrations and net nitrification increased. Negative correlations between net nitrification and DOC concentration suggested that NH4+ was transformed to NO3 by nitrifiers when the C availability was depleted. Taken together, our results suggest that available C appears to control soil microbial activity and N dynamics, and that microbial N immobilization is facilitated by active heterotrophic microorganisms stimulated by high C availability. Soil autotrophic nitrification is magnified by decreases in C availability for heterotrophic microbial activity. This study provides an experimental data set that supports the conceptual model to show and highlight that microbial dynamics and N transformations could be functionally coupled with DOC availability in the tropical deciduous forest soils. Responsible Editor: Chris Neill  相似文献   

10.
植被类型与坡位对喀斯特土壤氮转化速率的影响   总被引:4,自引:0,他引:4  
土壤氮素转化对于植物氮素营养具有重要作用,尤其是对于受氮素限制的喀斯特退化生态系统。选取植被恢复过程中4种典型喀斯特植被类型(草丛、灌丛、次生林、原生林)和3个坡位(上、中、下坡位)表层土壤(0—15cm)为对象,利用室内培养的方法,研究不同植被类型和坡位下土壤氮素养分与氮转化速率(氮净矿化率、净硝化率和净氨化率)的特征及其影响因素。结果表明,植被类型对土壤硝态氮含量、无机氮含量、氮净矿化率、净硝化率和净氨化率均有显著影响(P0.01),即随着植被的正向演替(草丛—灌丛—次生林—原生林),土壤硝态氮含量、无机氮含量、土壤氮净矿化速率和净硝化速率整体上呈增加趋势,而坡位以及坡位与植被类型的交互作用对上述土壤氮素指标无显著影响(P0.05)。冗余分析结果表明凋落物氮含量、凋落物C∶N比和硝态氮含量对土壤氮转化速率有显著影响,其中凋落物氮含量是影响土壤氮转化速率的主要因子(F=35.634,P=0.002)。可见,尽管坡位影响喀斯特水土再分配过程,但植被类型决定的凋落物质量(如凋落物氮含量等)对喀斯特土壤氮素转化速率的作用更为重要。因此,在喀斯特退化生态系统植被恢复初期,应注重植被群落的优化配置(如引入豆科植物)和土壤质量的改善(如降低土壤C∶N),促进土壤氮素转化及氮素的有效供给。  相似文献   

11.
We assessed the potential impact of global warming resulting from a doubling of preindustrial atmospheric CO2 on soil net N transformations by transferring intact soil cores (0–15 cm) from a high-elevation old-growth forest to a forest about 800 m lower in elevation in the central Oregon Cascade Mountains, USA. The lower elevation site had mean annual air and soil (10-cm mineral soil depth) temperatures about 2.4 and 3.9 °C higher than the high-elevation site, respectively. Annual rates of soil net N mineralization and nitrification more than doubled in soil transferred to the low-elevation site (17.2–36.0 kg N ha–1 and 5.0–10.7 kg NO3–N ha–1, respectively). Leaching of inorganic N from the surface soil (in the absence of plant uptake) also increased. The reciprocal treatment (transferring soil cores from the low- to the high-elevation site) resulted in decreases of about 70, 80, and 65% in annual rates of net N mineralization, nitrification, and inorganic N leaching, respectively. Laboratory incubations of soils under conditions of similar temperature and soil water potential suggest that the quality of soil organic matter is higher at the high-elevation site. Similar in situ rates of soil net N transformations between the two sites occurred because the lower temperature counteracts the effects of greater substrate quantity and quality at the high elevation site. Our results support the hypothesis that high-elevation, old-growth forest soils in the central Cascades have higher C and N storage than their low-elevation analogues primarily because low temperatures limit net C and N mineralization rates at higher elevations.  相似文献   

12.
Dormant season inorganic nitrogen (N) leaching varies considerably among forested catchments with similar bedrock, forest cover and deposition history. Recent work has highlighted the importance of winter rain-on-snow (ROS) events as a source of winter nitrate (NO3-N) export, but differences among streams are likely due to differences in baseflow NO3-N concentrations, and thus soil N processes. The objective of this study was to investigate rates of N-mineralization and nitrification as well as their potential environmental controls throughout the year, but with particular focus on the winter season in south-central Ontario, Canada. Field incubations were utilized to assess differences in NO3-N and ammonium production over time and across topographic positions in two catchments with contrasting patterns of N export. Rates of nitrification were similar to rates of total mineralization, and nitrification rates were significantly higher during the summer and spring compared with the winter and fall; however, winter nitrification was substantial, and ranged from 19 to 36 % of annual rates. Seasonal differences in nitrification were largely driven by temperature, soil moisture and inorganic N concentration in soil. Rain and melting snow infiltrated the soil during ROS events, which were associated with increased NO3-N availability, particularly in well-drained soils, and ROS-induced increases in stream nitrate concentrations were largest at the catchment dominated by well-drained soil. Annual nitrification fluxes were almost two orders of magnitude greater than N deposition or NO3-N leaching fluxes at either catchment. Similar rates of NO3-N production within the two catchments suggest that consumption of NO3-N within wet soils is responsible for the 10-fold difference in NO3-N export between the two streams. Notably, these results suggest that consumption processes were important for reducing NO3-N export even during winter ROS events.  相似文献   

13.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

14.
大兴安岭北部天然针叶林土壤氮矿化特征   总被引:10,自引:5,他引:5  
肖瑞晗  满秀玲  丁令智 《生态学报》2019,39(8):2762-2771
采用顶盖埋管法对大兴安岭地区天然针叶林(樟子松林、樟子松-兴安落叶松混交林和兴安落叶松林)土壤铵态氮(NH~+_4-N)、硝态氮(NO~-_3-N)、净氮矿化速率进行研究,并探索土壤理化性质与氮矿化之间的相关性,为大兴安岭地区森林生态系统土壤养分管理及森林经营提供帮助。结果表明:观测期内(5—10月)3种林型土壤无机氮变化范围为31.51—70.42 mg/kg,以NH~+_4-N形式存在为主,占比达90%以上,且与纯林相比混交林土壤无机氮含量较高。3种林型土壤净氮矿化、净氨化、净硝化速率月变化趋势呈V型,7、8月表现为负值,其他月份为正值。净氮矿化速率变化范围樟子松林为-0.54—1.28 mg kg~(-1) d~(-1)、樟子松-兴安落叶松混交林为-0.13—0.55 mg kg~(-1) d~(-1)、兴安落叶松林为-0.80—1.05 mg kg~(-1) d~(-1)。土壤净氨化过程在土壤氮矿化中占主要地位,占比达60%以上。3种林型土壤净氮矿化、净氨化及净硝化速率垂直差异显著,0—10 cm土层矿化作用明显高于10—20 cm土层(P0.05)。土壤氮矿化速率与土壤含水量、土壤有机碳含量、土壤C/N、枯落物全氮含量和枯落物C/N均存在显著相关性。不同类型的森林土壤及枯落物的质量也存在差异,进而影响土壤氮矿化特征。  相似文献   

15.
Soils that are physically disturbed are often reported to show net nitrification and NO3 loss. To investigate the response of soil N cycling rates to soil mixing, we assayed gross rates of mineralization, nitrification, NH4+ consumption, and NO3 consumption in a suite of soils from eleven woody plant communities in Oregon, New Mexico, and Utah. Results suggest that the common response of net NO3 flux from disturbed soils is not a straightforward response of increased gross nitrification, but instead may be due to the balance of several factors. While mineralization and NH4+ assimilation were higher in mixed than intact cores, NO3 consumption declined. Mean net nitrification was 0.12 mg N kg−1 d−1 in disturbed cores, which was significantly higher than in intact cores (−0.19 mg N kg−1 d−1). However, higher net nitrification rates in disturbed soils were due to the suppression of NO3 consumption, rather than an increase in nitrification. Our results suggest that at least in the short term, disturbance may significantly increase NO3 flux at the ecosystem level, and that N cycling rates measured in core studies employing mixed soils may not be representative of rates in undisturbed soils.  相似文献   

16.
Suppression of nitrate formation within an exotic conifer plantation   总被引:1,自引:0,他引:1  
Summary Nitrate-N losses to stream waters and soil inorganic N pools, nitrifying potentials and NO3-N production rates were measured in 2 adjacent watersheds, one used as pasture and the other planted in exotic conifer forest (Pinus radiata D. Don). Estimated NO3-N loss to stream waters draining the pine and pasture watersheds were 0.6kg ha−1 y−1 and 7.6 kg ha−1 y−1 respectively. Ammonium-N pool sizes were not significantly different between soils in the two watersheds but NO3−N pools and nitrifying potentials were always lower in the pine watershed soil samples. Laboratory incubation experiments indicated that suppression of NO3−N formation in pine watershed soils required the presence of live tree roots and was not due to the direct action of allelopathic chemicals on nitrifiers.  相似文献   

17.
Measuring nitrogen (N) transformations from organic fertilizers can help in selecting applications rates that provide sufficient soluble N to promote tree growth in short-rotation plantations. The objective of this study was to determine how organic fertilizers (papermill biosolids, liquid pig slurry) affected microbially-mediated N transformations in soils. Soil samples were collected from a hybrid poplar plantation before fertilization, 1 month after fertilizer application and at the end of the growing season. Net N mineralization and nitrification were evaluated during a 28 d laboratory incubation, while gross N transformations were assessed using a 15N isotope dilution technique. Pig slurry application increased soil ammonium (NH4-N) and nitrate (NO3-N) concentrations within 1 month, while papermill biosolids increased soil NH4-N and NO3-N concentrations at the end of the growing season. Gross N consumption rates were greater than gross N production rates. The NH4-N and NO3-N consumption rates were positively correlated with labile carbon and microbial biomass. The gross nitrification rate was 18 to 67% of the gross mineralization rate but 30% or less of the gross NH4-N consumption rate, indicating that NH4 consumption was overestimated by the isotope dilution technique. We conclude that N cycling in this hybrid poplar plantation was characterized by rapid consumption of plant-available N following N mineralization and nitrification.  相似文献   

18.
Losses of nitrogen (N) often follow severe disturbance of forest ecosystems. In tropical forests, losses of N associated with the disturbance of clearing may be particularly important because rates of soil N cycling are high and forest clearing now occurs on a large scale. We measured soil solution inorganic N concentrations and fluxes for 1 year in an intact forest in the Brazilian Amazon state of Rondônia and in an adjacent 3-ha forest plot that was cleared for pasture by cutting, burning and planting pasture grass and in established cattle pastures on the same soils that were 5 and 22 years old. The cleared forest had higher soil solution NO 3 ? concentrations than the intact forest, but the difference between the cleared and control forests declined with time after the start of the first post-clearing rainy season. Established pastures had much lower solution NH 4 + and NO 3 ? concentrations than forest or cleared forest. Estimated annual dissolved inorganic solution N fluxes to below 1 m during the first year after clearing were 2.5 kg ha?1 in forest and 24.4 kg ha?1 in newly cleared forest compared with only 0.5–1.2 kg ha?1 in established pastures. The solution fluxes from cleared forest during the first year after clearing were approximately 7 times greater than gaseous N oxide (N2O+NO) losses estimated for the same time. These results were consistent with the characterization of moist tropical forests on weathered soils as N-rich and likely to respond to disturbances that elevate soil N availability with increased loss to both soil solution and the atmosphere. These results also suggest that the relative increase in N oxide loss is substantially less than the increase solution inorganic N loss.  相似文献   

19.
We studied how ungulates and a large variation in site conditions influenced grassland nitrogen (N) dynamics in Yellowstone National Park. In contrast to most grassland N studies that have examined one or two soil N processes, we investigated four rates, net N mineralization, nitrification, denitrification, and inorganic N leaching, at seven paired sites inside and outside long-term (33+ year) exclosures. Our focus was how N fluxes were related to one another among highly variable grasslands and how grazers influenced those relationships. In addition, we examined variation in soil δ15N among grasslands and the relationships between soil 15N abundance and N processes. Previously, ungulates were reported to facilitate net N mineralization across variable Yellowstone grasslands and denitrification at mesic sites. In this study, we found that herbivores also promoted nitrification among diverse grasslands. Furthermore, net N mineralization, nitrification, and denitrification (kg N ha–1 year–1, each variable) were postively and linearly related to one another among all grasslands (grazed and fenced), and grazers reduced the nitrification/net N mineralization and denitrification/net N mineralization ratios, indicating that ungulates inhibited the proportion of available NH4 + that was nitrified and denitrified. There was no relationship between net N mineralization or nitrification with leaching (indexed by inorganic N adsorbed to resin buried at the bottom of rooting zones) and leaching was unaffected by grazers. Soil δ15N was positively and linearly related to in situ net N mineralization and nitrification in ungrazed grasslands; however, there was no relationship between isotopic composition of N and those rates among grazed grasslands. The results suggested that grazers simultaneously increased N availability (stimulated net N mineralization and nitrification per unit area) and N conservation (reduced N loss from the soil per unit net N mineralization) in Yellowstone grasslands. Grazers promoted N retention by stimulating microbial productivity, probably caused by herbivores promoting labile soil C. Process-level evidence for N retention by grazers was supported by soil δ15N data. Grazed grassland with high rates of N cycling had substantially lower soil δ15N relative to values expected for ungrazed grassland with comparable net N mineralization and nitrification rates. These soil 15N results suggest that ungulates inhibited N loss at those sites. Such documented evidence for consumer control of N availability to plants, microbial productivity, and N retention in Yellowstone Park is further testimony for the widespread regulation of grassland processes by large herbivores. Received: 5 May 1999 / Accepted: 1 November 1999  相似文献   

20.
Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems   总被引:6,自引:1,他引:5  
The effects of cultivation and soil texture on net and gross N mineralization, CO2 evolution and C and N turnover were investigated using paired grassland and cropped sites on soils of three textures. Gross N mineralization and immobilization were measured using15N-isotope dilution. Grassland soils had high CO2 evolution and gross N mineralization rates, and low net N mineralization rates. Cropland soils had low CO2 evolution rates but had high net and gross N mineralization rates. Grassland soils thus had high immobilization rates and cropland soils had low immobilization rates. Cultivation increased N turnover but reduced C turnover. The data suggest that the microflora in grassland soils are N limited, while those of cropland soils are limited by C availability. Increasing clay content reduced N turnover. C turnover was less clearly related to texture. Differences in the immobilization potential of substrates help explain why agricultural soils have higher N losses than do grassland soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号