首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO3 ?-N and total inorganic N concentrations than pasture soils, but substantial NO3 ?-N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.  相似文献   

2.
High rates of deforestation in the Brazilian Amazon have the potential to alter the storage and cycling of carbon (C) and nitrogen (N) across this region. To investigate the impacts of deforestation, we quantified total aboveground biomass (TAGB), aboveground and soil pools of C and N, and soil N availability along a land-use gradient in Rondônia, Brazil, that included standing primary forest, slashed primary and secondary forest, shifting cultivation, and pasture sites. TAGB decreased substantially with increasing land use, ranging from 311 and 399 Mg ha–1 (primary forests) to 63 Mg ha–1 (pasture). Aboveground C and N pools declined in patterns and magnitudes similar to those of TAGB. Unlike aboveground pools, soil C and N concentrations and pools did not show consistent declines in response to land use. Instead, C and N concentrations were strongly related to percent clay content of soils. Concentrations of NO3-N and NH4-N generally increased in soils following slash-and-burn events along the land-use gradient and decreased with increasing land use. Increasing land use resulted in marked declines in NO3-N pools relative to NH4-N pools. Rates of net nitrification and N-mineralization were also generally higher in postfire treatments relative to prefire treatments along the land-use gradient and declined with increasing land use. Results demonstrate the linked responses of aboveground C and N pools and soil N availability to land use in the Brazilian Amazon; steady reductions in aboveground pools along the land-use gradient were accompanied by declines in inorganic soil N pools and transformation rates.  相似文献   

3.
The short-term effect of a single fire, and the long-term effect of recent fire history and successional stage on total and mineral N concentration, net nitrogen mineralization, and nitrification were evaluated in soils from a steep semi-arid shrubland chronosequence in southeast Spain. A single fire significantly increased soil mineral N availability and net nitrification. Increasing fire frequency in the last few decades was. associated with a sharp decrease in surface soil organic matter and total N concentrations and pools, and with changes in the long-term N dynamic patterns. The surface-soil extractable NH4 +:NO3 ratio increased throughout the chronosequence. All net mineralized N in laboratory incubations from all sites was converted to nitrate, suggesting that allelochemic inhibition of net nitrification is probably not important in this system. Net nitrification in samples during incubation increased through the sere. The maximum rate of net nitrification (kmax) increased through the first three stages of the sere. A linear relationship was found between total soil N and N mineralization, and both kmax and net nitrification for the first three stages of the sere, suggesting that total N and ammonification are likely to be the control mechanisms of nitrification within the sere. The oldest site exhibited the lowest specific kmax and the highest, potential soil respiration rate suggesting that a lower N quality and increasing competition for ammonium might also limit nitrification at least in the long-unburned garrigue site.  相似文献   

4.
Summary The depth distributions of rates of net nitrogen mineralization and nitrification were measured in a series of field and laboratory incubations. Field studies suggested that the highest rates of mineralization and nitrification occurred in the surface 2.5 cm such that forty to sixty percent of the N mineralization in 20-cm soil column occurred in the surface 2.5cm. Some upward nitrate movement occurred but laboratory studies suggested that surface rates were not an artifact of nitrate mobility alone. Microclimatic data indicate that either dew or upward movement and condensation of soil water vapor may drive biological activity at the soil surface. High rates of N mineralization even in dry horizons were sustained as long as water was stored within the 0-to 20-cm depth. High rates of nitrification were found in all incubations, and field measurements showed NO 3 to be the predominant form of inorganic N, despite previous characterization of the shortgrass steppe as an NH 4 + -dominated system.  相似文献   

5.
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region of Puerto Rico. Fluxes of N2O and NO were measured monthly for over 1 year in old (more than 60 years old) pastures, early- and mid-successional forests previously in pasture, and late-successional forests not known to have been in pasture within the tabonuco (Dacryodes excelsa) forest zone. Additional, though less frequent, measures were also made in an experimentally fertilized tabonuco forest. N2O fluxes exceeded NO fluxes at all sites, reflecting the consistently wet environment. The fertilized forest had the highest N oxide emissions (22.0 kg N · ha−1· y−1). Among the unfertilized sites, the expected pattern of increasing emissions with stand age did not occur in all cases. The mid-successional forest most dominated by leguminous trees had the highest emissions (9.0 kg N · ha−1· y−1), whereas the mid-successional forest lacking legumes had the lowest emissions (0.09 kg N · ha−1· y−1). N oxide fluxes from late-successional forests were higher than fluxes from pastures. Annual N oxide fluxes correlated positively to leaf litter N, net nitrification, potential nitrification, soil nitrate, and net N mineralization and negatively to leaf litter C:N ratio. Soil ammonium was not related to N oxide emissions. Forests with lower fluxes of N oxides had higher rates of C mineralization than sites with higher N oxide emissions. We conclude that (a) N oxide fluxes were substantial where the availability of inorganic N exceeded the requirements of competing biota; (b) species composition resulting from historical land use or varying successional dynamics played an important role in determining N availability; and (c) the established ecosystem models that predict N oxide loss from positive relationships with soil ammonium may need to be modified. Received 22 February 2000; accepted 6 September 2000.  相似文献   

6.
Summary Seasonal patterns of net N mineralization and nitrification in the 0–10 cm mineral soil of 9 temperate forest sites were analyzed using approximately monthlyin situ soil incubations. Measured nitrification rates in incubated soils were found to be good estimates of nitrification in surrounding forest soils. Monthly net N mineralization rates and pools of ammonium-N in soil fluctuated during the growing season at all sites. Nitrate-N pools in soil were generally smaller than ammonium-N pools and monthly nitrification rates were less variable than net N mineralization rates. Nitrate supplied most of the N taken up annually by vegetation at 8 of the 9 sites. Furthermore, despite the large fluctuations in ammonium-N pools and monthly net N mineralization, nitrate was taken up at relatively uniform rates during the growing season at most sites.  相似文献   

7.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

8.
We assessed the potential impact of global warming resulting from a doubling of preindustrial atmospheric CO2 on soil net N transformations by transferring intact soil cores (0–15 cm) from a high-elevation old-growth forest to a forest about 800 m lower in elevation in the central Oregon Cascade Mountains, USA. The lower elevation site had mean annual air and soil (10-cm mineral soil depth) temperatures about 2.4 and 3.9 °C higher than the high-elevation site, respectively. Annual rates of soil net N mineralization and nitrification more than doubled in soil transferred to the low-elevation site (17.2–36.0 kg N ha–1 and 5.0–10.7 kg NO3–N ha–1, respectively). Leaching of inorganic N from the surface soil (in the absence of plant uptake) also increased. The reciprocal treatment (transferring soil cores from the low- to the high-elevation site) resulted in decreases of about 70, 80, and 65% in annual rates of net N mineralization, nitrification, and inorganic N leaching, respectively. Laboratory incubations of soils under conditions of similar temperature and soil water potential suggest that the quality of soil organic matter is higher at the high-elevation site. Similar in situ rates of soil net N transformations between the two sites occurred because the lower temperature counteracts the effects of greater substrate quantity and quality at the high elevation site. Our results support the hypothesis that high-elevation, old-growth forest soils in the central Cascades have higher C and N storage than their low-elevation analogues primarily because low temperatures limit net C and N mineralization rates at higher elevations.  相似文献   

9.
Chang  Shih-Chieh  Matzner  Egbert 《Plant and Soil》2000,218(1-2):117-125
In European beech (Fagus sylvatica L.) forests, a large proportion of the water and ion input to the soil results from stemflow which creates a soil microsite of high element fluxes proximal to the tree trunk. The soil proximal to the stem is considered to have different rates of nitrogen turnover which might influence the estimation of N-turnover rates at the stand scale. In a previous study we reported high nitrate fluxes with seepage proximal to the stems in a forest dominated by European beech in Steigerwald, Germany. Here, we investigated the soil nitrogen turnover in the top 15 cm soil in proximal (defined as 1 m2 around beech stems) and distal stem areas. Laboratory incubations and in situ sequential coring incubations were used to determine the net rates of ammonification, nitrification, and root uptake of mineral nitrogen. In the laboratory incubations higher rates of net nitrogen mineralization and nitrification were found in the forest floor proximal to the stem as compared to distal stem areas. No stem related differences were observed in case of mineral soil samples. In contrast, the in situ incubations revealed higher rates of nitrification in the mineral soil in proximal stem areas, while net nitrogen mineralization was equal in proximal and distal areas. In the in situ incubations the average ratio of nitrification/ammonification was 0.85 in proximal and 0.34 in distal stem areas. The net nitrogen mineralization was 4.4 g N m-2 90 day-1 in both areas. Mineralized nitrogen was almost completely taken up by tree roots with ammonium as the dominant nitrogen species. The average ratio of nitrate/ammonium uptake was 0.69 in proximal and 0.20 in distal areas. The higher water content of the soil in proximal stem areas is considered to be the major reason for the increased rates of nitrification. Different nitrogen turnover rates in proximal stem areas had no influence on the nitrogen turnover rates in soil at the stand scale. Consequently, the observed high nitrate fluxes with seepage proximal to stems are attributed to the high nitrogen input by stemflow rather than to soil nitrogen turnover. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
植被类型与坡位对喀斯特土壤氮转化速率的影响   总被引:4,自引:0,他引:4  
土壤氮素转化对于植物氮素营养具有重要作用,尤其是对于受氮素限制的喀斯特退化生态系统。选取植被恢复过程中4种典型喀斯特植被类型(草丛、灌丛、次生林、原生林)和3个坡位(上、中、下坡位)表层土壤(0—15cm)为对象,利用室内培养的方法,研究不同植被类型和坡位下土壤氮素养分与氮转化速率(氮净矿化率、净硝化率和净氨化率)的特征及其影响因素。结果表明,植被类型对土壤硝态氮含量、无机氮含量、氮净矿化率、净硝化率和净氨化率均有显著影响(P0.01),即随着植被的正向演替(草丛—灌丛—次生林—原生林),土壤硝态氮含量、无机氮含量、土壤氮净矿化速率和净硝化速率整体上呈增加趋势,而坡位以及坡位与植被类型的交互作用对上述土壤氮素指标无显著影响(P0.05)。冗余分析结果表明凋落物氮含量、凋落物C∶N比和硝态氮含量对土壤氮转化速率有显著影响,其中凋落物氮含量是影响土壤氮转化速率的主要因子(F=35.634,P=0.002)。可见,尽管坡位影响喀斯特水土再分配过程,但植被类型决定的凋落物质量(如凋落物氮含量等)对喀斯特土壤氮素转化速率的作用更为重要。因此,在喀斯特退化生态系统植被恢复初期,应注重植被群落的优化配置(如引入豆科植物)和土壤质量的改善(如降低土壤C∶N),促进土壤氮素转化及氮素的有效供给。  相似文献   

11.
大兴安岭北部天然针叶林土壤氮矿化特征   总被引:10,自引:5,他引:5  
肖瑞晗  满秀玲  丁令智 《生态学报》2019,39(8):2762-2771
采用顶盖埋管法对大兴安岭地区天然针叶林(樟子松林、樟子松-兴安落叶松混交林和兴安落叶松林)土壤铵态氮(NH~+_4-N)、硝态氮(NO~-_3-N)、净氮矿化速率进行研究,并探索土壤理化性质与氮矿化之间的相关性,为大兴安岭地区森林生态系统土壤养分管理及森林经营提供帮助。结果表明:观测期内(5—10月)3种林型土壤无机氮变化范围为31.51—70.42 mg/kg,以NH~+_4-N形式存在为主,占比达90%以上,且与纯林相比混交林土壤无机氮含量较高。3种林型土壤净氮矿化、净氨化、净硝化速率月变化趋势呈V型,7、8月表现为负值,其他月份为正值。净氮矿化速率变化范围樟子松林为-0.54—1.28 mg kg~(-1) d~(-1)、樟子松-兴安落叶松混交林为-0.13—0.55 mg kg~(-1) d~(-1)、兴安落叶松林为-0.80—1.05 mg kg~(-1) d~(-1)。土壤净氨化过程在土壤氮矿化中占主要地位,占比达60%以上。3种林型土壤净氮矿化、净氨化及净硝化速率垂直差异显著,0—10 cm土层矿化作用明显高于10—20 cm土层(P0.05)。土壤氮矿化速率与土壤含水量、土壤有机碳含量、土壤C/N、枯落物全氮含量和枯落物C/N均存在显著相关性。不同类型的森林土壤及枯落物的质量也存在差异,进而影响土壤氮矿化特征。  相似文献   

12.
Studies in unpolluted, old-growth forests in the coastal range of southern Chile (42°30′S) can provide a baseline for understanding how forest ecosystems are changing due to the acceleration of nitrogen (N) inputs that has taken place over the last century. Chilean temperate forests, in contrast to their northern hemisphere counterparts, exhibit extremely low losses of inorganic N to stream waters. The objectives of this study were (a) to determine whether low inorganic N outputs in these forests were due to low rates of N mineralization or nitrification, and (b) to examine how biodiversity (defined as number of dominant tree species) and forest structure influence N mineralization and overall patterns of N cycling. Studies were conducted in a species-poor, conifer-dominated (Fitzroya cupressoides) forest with an even-aged canopy, and in a mixed-angiosperm (Nothofagus nitida) forest with a floristically more diverse and unstable canopy. Nitrogen mineralization rates measured in laboratory assays varied seasonally, reaching 6.0 μg N/g DW/day in both forests during late summer. Higher values were related to higher microbial activity, larger pools of labile inorganic N, and increased fine litter inputs. Field assays, conducted monthly, indicated positive net flux from N mineralization mainly from December to January in both forests. Annual net flux of N from mineralization varied from 20 to 23 kg/ha/year for the Fitzroya forest and from 31 to 37 kg/ha/year for the Nothofagus forest. Despite low losses of inorganic N to streams, N mineralization and nitrification are not inhibited in these forests, implying the existence of strong sinks for NO3 in the ecosystem. Field N mineralization rates were two times higher in the Nothofagus forest than in the Fitzroya forest, and correlated with greater N input via litterfall, slightly higher soil pH, and narrower carbon (C)–nitrogen ratios of soils and litter in the former. Differences in N mineralization between the two forest types are attributed to differences in biotic structure, stand dynamics, and site factors. Median values of net N mineralization rates in these southern hemisphere forests were lower than median rates for forests in industrialized regions of North America, such as the eastern and central USA. We suggest that these high N mineralization rates may be a consequence of enhanced atmospheric N deposition.  相似文献   

13.
Soil nitrogen (N) mineralization is an important component of the N cycling process in ecosystems. In this study, we assessed the seasonal patterns of net soil N mineralization and nitrification using an intact soil core incubation method in the upper 0–10 cm soil layer in three representative land use types. These included a fenced steppe, an abandoned field and a crop field in a grassland landscape of Inner Mongolia, China. The study was conducted from September 2004 to August 2005. Our results demonstrate marked seasonal variations in inorganic N pools, net nitrogen mineralization and net nitrification. Net N mineralization was higher in the crop field than in the fenced steppe and the abandoned field. Daily rates of N mineralization and nitrification during the growing season were approximately twice their corresponding mean annual rates. Accumulative mineralization and nitrification of N during the growing season accounted for about 90 and 85% of that measured for the entire year. Rates of mineralization and nitrification were positively correlated with soil bulk density, but negatively correlated with soil pH. Net N mineralization and nitrification were strongly regulated by land use, precipitation, soil water and temperature.  相似文献   

14.
Losses of nitrogen (N) often follow severe disturbance of forest ecosystems. In tropical forests, losses of N associated with the disturbance of clearing may be particularly important because rates of soil N cycling are high and forest clearing now occurs on a large scale. We measured soil solution inorganic N concentrations and fluxes for 1 year in an intact forest in the Brazilian Amazon state of Rondônia and in an adjacent 3-ha forest plot that was cleared for pasture by cutting, burning and planting pasture grass and in established cattle pastures on the same soils that were 5 and 22 years old. The cleared forest had higher soil solution NO 3 ? concentrations than the intact forest, but the difference between the cleared and control forests declined with time after the start of the first post-clearing rainy season. Established pastures had much lower solution NH 4 + and NO 3 ? concentrations than forest or cleared forest. Estimated annual dissolved inorganic solution N fluxes to below 1 m during the first year after clearing were 2.5 kg ha?1 in forest and 24.4 kg ha?1 in newly cleared forest compared with only 0.5–1.2 kg ha?1 in established pastures. The solution fluxes from cleared forest during the first year after clearing were approximately 7 times greater than gaseous N oxide (N2O+NO) losses estimated for the same time. These results were consistent with the characterization of moist tropical forests on weathered soils as N-rich and likely to respond to disturbances that elevate soil N availability with increased loss to both soil solution and the atmosphere. These results also suggest that the relative increase in N oxide loss is substantially less than the increase solution inorganic N loss.  相似文献   

15.
Abstract: In the semiarid Mulga Lands of southern Queensland soil nitrogen (N) levels have declined after clearance of the native mulga (Acacia aneura F. Muell. ex Benth.) and conversion to grazed buffel grass (Cenchrus ciliaris) pasture. At three mulga sites, declines in soil total N ranged from 14% to 28% in the surface 10 cm of soil. In situ net N mineralization from December 2003 until November 2004 in the surface 10 cm was 49.5 kg N ha?1 year?1 in the mulga woodland, 48.2 kg N ha?1 year?1 in the young (<5 years old) buffel pasture (previously sown to wheat (Triticum aestivum L.) and 34.6 kg N ha?1 year?1 in the old buffel pasture (>20 years). Ammonium‐N was the dominant N pool under mulga in the top 30 cm, while nitrate‐N was dominant under the buffel pastures. Although ammonium‐N under mulga was significantly different to that for 21‐year‐old buffel pasture at all depths, nitrification and net N mineralization were not different between the three land uses at any depth or in the entire 90 cm profile. The Soil Nitrogen Availability Predictor model was used to predict field N mineralization rates for the mulga woodland and 21‐year‐old buffel pasture by using a medium‐term (6‐week) laboratory incubation to establish basal rates of N mineralization. The Soil Nitrogen Availability Predictor overestimated annual net N mineralization in the 0–30 cm depth of mulga by 9% and underestimated it by 28% for the old buffel pasture. The Soil Nitrogen Availability Predictor could be modified further to accurately predict net N mineralization for the mulga woodlands.  相似文献   

16.
Individual trees are known to influence soil chemical properties, creating spatial patterns that vary with distance from the stem. The influence of trees on soil chemical properties is commonly viewed as the agronomic basis for low-input agroforestry and shifting cultivation practices, and as an important source of spatial heterogeneity in forest soils. Few studies, however, have examined the persistence of the effects of trees on soil after the pathways responsible for the effects are removed. Here, we present evidence from a Mexican dry forest indicating that stem-related patterns of soil nutrients do persist following slash-and-burn removal of trees and two years of cropping. Pre-disturbance concentrations of resin extractable phosphorus (P), bicarbonate extractable P, NaOH extractable P, total P, total nitrogen (N) and carbon (C), KCl extractable nitrate (NO3 -), and net N mineralization and nitrification rates were higher in stem than dripline soils under two canopy dominant species of large-stemmed trees with contrasting morphologies and phenologies (Caesalpinia eriostachys Benth. and Forchhammeria pallida Liebm.). These stem effects persisted through slash burning and a first growing season for labile inorganic and organic P, NaOH inorganic P, and plant-available P, and through a second growing season for labile organic P, NaOH organic P, and plant-available P. While stem effects for extractable NO3 -, net nitrification rates, total N and C disappeared after felling and slash burning, these stem effects returned after the first growing season. These results support the view that tree-influenced patterns of soil nutrients do persist after tree death, and that trees contribute to the long-term spatial heterogeneity of forest soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
We examined the natural abundance of 15N in soil profiles along two chronosequences in the western Brazilian Amazon Basin state of Rondônia, to investigate possible mechanisms for changes to soil nitrogen sources and transformations that occur as a result of land use. One chronosequence consisted of forest and 3-, 5- and 20-year-old pasture, the other of forest and 8- and 20-year-old pasture. The 15N values of surface soil and soil to 1 m depth in the native forest ranged from 9.8 to 13.6 and were higher than reported for temperate forest soils. Fractionation associated with nitrification and denitrification and selective losses of 15N-depleted nitrate, could potentially result in a strong enrichment of nitrogen in soil organic matter over the time scale of soil development in highly weathered tropical soils. Pasture surface soils were 1–3, depleted in 15N compared with forest soils. Lower 15N values in 20-year-old pastures is consistent with greater cumulative inputs of 15N-depleted atmospheric-derived nitrogen, fixed by free-living bacteria associated with planted pasture grasses in older pastures, or differential plant utilization of soil inorganic N pools with different 15N values. The pattern of 15N values following conversion of forest to agricultural use differs from the pattern in the temperate zone, where pasture or cultivated soils are typically more enriched in 15N than the forest soils from which they were derived.  相似文献   

18.
Studies of nitrogen availability were carried out in radiata pine (Pinus radiata D. Don) plantations on former pasture sites in N.S.W. in conjunction with studies of the effects of previous land use on tree form. Sites were selected on previously improved pastures (cleared with introduced legumes) and unimproved pastures (partially cleared without legumes) to form age sequences of stands which had been established for periods of up to fifteen years. Mineral-N pools in soils and forest floor samples were determined monthly for thirteen months and nitrification potentials were determined from periodic laboratory incubations.Nitrate and ammonium pools in 2-, 4-, 6-, 9- and 15-year-old radiata pine stands fluctuated seasonally, peaking in summer and autumn. Maximum total mineral-N concentrations of 20 to 40 g g–1 soil occurred in the youngest, ex-improved pastures with nitrate-N concentrations of up to 25 g g–1. In the 15-year-old stands, nitrate-N was only detected during autumn, at less than 5 g g–1 soil. Net N-mineralization and nitrification potentials were consistently higher in the ex-improved pasture soils compared with the ex-unimproved pastures. N availability decreased with increasing stand age in the ex-improved pasture soils, but the pattern was less clear for the unimproved pasture sites. Suppression of clover by pines and the accumulation of nitrogen in the standing biomass are thought to be the major factors controlling the decline of available N during stand development.  相似文献   

19.
Summary Nitrogen mineralization and net nitrification rates were 3–7 times greater in soil incubations from a girdled Liriodendron tulipifera (L.) stand than in a control stand. Neither litter nor root extracts had an inhibitory effect on nitrogen mineralization or nitrification rate. A lack of nitrification inhibitors also was demonstrated by the fact that ammonium added to the control stand was completely converted to nitrate upon incubation. Additions of sucrose increased CO2 evolution and decreased nitrogen mineralization and nitrification rates in the girdled plot soil, suggesting that nitrification could be effectively controlled by competition for NH 4 + supplies by heterotrophic soil organisms. CO2 evolution rates during incubation showed that heterotrophic as well as nitrifier activities were greater in the girdled plot soil than in the ungirdled plot soil, but the ratio of C to N mineralized was lower in the girdled plot soil. These results collectively indicate that nitrification is regulated by the availability of NH 4 + in these stands, and that the latter is strongly regulated by heterotrophic demand for N.Operated by Union Carbide Corporation for the U.S. Department of Energy  相似文献   

20.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号