首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
基于约束的基因组尺度代谢网络模型(genome-scale metabolic models,GEMs)分析已被广泛应用于代谢表型的预测。而实际细胞中代谢速率除计量学约束外,还受到酶资源可用性和反应热力学可行性等其他因素影响,在GEMs中整合酶资源约束或者热力学约束构建多约束代谢网络模型可以进一步缩小优化解空间,提升细胞表型预测的准确性。文中主要对近年来多约束模型的研究进展进行了综述,介绍了不同多约束模型的构建方法,以及其在研究基因敲除影响、预测可行途径和提供代谢瓶颈信息等方面的应用。将多种约束条件进一步与代谢模型整合,可更准确地预测细胞代谢的瓶颈和关键调控改造靶点,从而为工业菌种代谢工程改造提供精确的设计指导。  相似文献   

2.
高产特定产品的人工细胞工厂的构建需要对野生菌株进行大量的基因工程改造,近年来随着大量基因组尺度代谢网络模型的构建,人们提出了多种基于代谢网络分析预测基因改造靶点以使某一目标化合物合成最优的方法。这些方法利用基因组尺度代谢网络模型中的反应计量关系约束和反应不可逆性约束等,通过约束优化的方法预测可使产物合成最大化的改造靶点,避免了传统的通过相关途径的直观分析确定靶点的方法的局限性和主观性,为细胞工厂的理性设计提供了新的思路。以下结合作者的实际研究经验,对这些菌种优化方法的原理、优缺点及适用性等进行详细介绍,并讨论了目前存在的主要问题和未来的研究方向,为人们针对不同目标产品选择合适的方法及预测结果的可靠性评估提供了指导。  相似文献   

3.
在代谢工程和系统生物学领域, 计算机模拟比以往更为有效的应用于生物过程的分析和优化。胞内代谢通量可以用代谢通量分析和基元模式分析来估算。由于测定数据的不足和误差, 以及基元途径的冗余, 经常很难得到准确的代谢通量分布数据。本研究提出一种基于最大熵原理的算法来计算基元模式系数。欠定和不确定条件下, 通过胞外代谢通量数据估算胞内代谢通量分布。为了检验算法的可行性, 对杂交瘤细胞、枯草芽孢杆菌和大肠杆菌的胞内代谢通量分布做了估算。本研究提出的基于最大熵原理的优化算法避免了对细胞状态的生理学假设。与其他目标函数相比, 可以更为可靠和可行的估算胞内代谢通量分布。  相似文献   

4.
组学分析技术的发展推动生物学逐渐成为一门以数据分析为中心的科学。依托生物数据在细胞整体系统水平建立数字细胞模型,对于理解细胞系统组织原理和生命产生进化规律,预测各种环境和基因扰动对细胞功能的影响并指导设计人工生命具有重要意义,因此数字细胞的构建模拟设计已成为合成生物学的核心研究内容与底层支撑技术。本文重点对天津工业生物技术研究所创立十年来在数字细胞研究方面的进展进行回顾介绍,重点包括基因组尺度代谢网络模型的构建、质控以及其在途径设计和指导菌种代谢工程改造方面的应用,进一步结合近年来细胞模型研究的前沿趋势,对整合多种约束的模型的构建和分析研究方面的最新成果进行了介绍,最后对数字细胞研究的未来发展方向进行展望。数字细胞技术将与基因组测序、合成和编辑等合成生物学前沿技术一起提升人们对生命进行读写改创的能力。  相似文献   

5.
花强  杨琛 《生物工程学报》2009,25(9):1303-1311
细胞内代谢反应流量在系统理解细胞代谢特性和指导代谢工程改造等方面都起着重要的作用。由于代谢流量难以直接测量得到,在很多情况下通过跟踪稳定同位素在代谢网络中的转移并进行相应的模型计算能有效地定量代谢流量。代谢流量比率分析法能够高度体现系统的生物化学真实性、辨别细胞代谢网络的拓扑结构,并且能够相对简单快速地定量反应速率等,因此受到代谢工程研究者越来越多的重视。以下着重介绍并讨论了利用代谢物同位体分布信息分析关键代谢节点合成途径的流量比率、基于流量比率的代谢流量解析、以及应用于代谢工程等的相关原理、实验测量、数据分析、使用条件等,以期充分发挥代谢流量比率分析法的优势,并将其拓展推广至更多细胞体系的代谢特性阐明和代谢工程改造中去。  相似文献   

6.
基因组尺度代谢网络模型是以菌株高通量测序数据和各种组学数据为基础,模拟生物体的代谢过程,该模型能够预测菌种改造位点并指导具体实验,使菌种改造更理性、更直接和更省时。基因组尺度代谢网络模型在生物质燃料产生菌的改造方面已取得一定进展,在提高目标产物产量方面已取得一定效果。本文综述了基因组尺度代谢网络模型在生物质燃料产生菌改造中的应用,展望了其应用前景。  相似文献   

7.
最小生命体的合成是合成生物学研究的重要方向。最小化基因组的同时而又不对细胞生长产生影响是代谢工程研究的一个重要目标。文中提出了一种从基因组尺度代谢网络模型出发,通过零通量反应删除及对非必需基因组合删除计算获得基因组最小化代谢网络模型的方法,利用该方法简化了大肠杆菌经典代谢网络模型iAF1260,由起始的1 260个基因简化得到了312个基因,而最优生物质生成速率保持不变。基因组最小化代谢网络模型预测了在细胞正常生长的前提下包含最少基因的代谢途径,为大肠杆菌获得最小基因组的湿实验设计提供了重要参考。  相似文献   

8.
代谢工程作为通过引入外源合成途径或改造优化代谢网络,进行高附加值的天然代谢产物生物合成的技术,已经得到广泛应用。但随着目标合成产物的结构日渐复杂,构建多基因的从头合成途径造成宿主生物代谢失衡与中间产物对宿主细胞产生毒害作用等一系列问题发生的可能性也随之增加。为解决这些问题合成支架策略应运而生,合成支架将途径酶共定位以提高局部酶和代谢物的浓度,来增强代谢通量并限制中间产物与宿主细胞环境间的相互作用,成为生物催化和合成生物学研究的热点之一。尽管由核酸、蛋白质构成的合成支架策略已经应用于多种代谢物的异源合成,并取得了不同程度的成功,但合成支架的精确组装仍然是一项艰巨的任务。文中详细介绍了合成支架技术的研究现状,详细阐述了合成支架技术的原理和实例,并初步探讨了其应用前景。  相似文献   

9.
刘志凤  王勇 《生物工程学报》2021,37(5):1494-1509
20世纪90年代,Bailey及Stephanopoulos等提出了经典代谢工程的理念,旨在利用DNA重组技术对代谢网络进行改造,以达到细胞性能改善,目标产物增加的目的。自代谢工程诞生以来的30年,生命科学蓬勃发展,基因组学、系统生物学、合成生物学等新学科不断涌现,为代谢工程的发展注入了新的内涵与活力。经典代谢工程研究已进入到前所未有的系统代谢工程阶段。组学技术、基因组代谢模型、元件组装、回路设计、动态控制、基因组编辑等合成生物学工具与策略的应用,大大提升了复杂代谢的设计与合成能力;机器学习的介入以及进化工程与代谢工程的结合,为系统代谢工程的未来开辟了新的方向。文中对过去30年代谢工程的发展趋势作了梳理,介绍了代谢工程在发展中不断创新的理论与方法及其应用。  相似文献   

10.
通过随机突变和定向选择而进行的定向进化(又称分子进化或人工进化)在改造酶的催化特性和稳定性、扩展酶的底物范围等方面具有广泛的应用。近年来,定向进化也开始应用在对结构基因的启动子区域和具有调节功能的蛋白如转录因子等进行代谢工程改造,并成功选育了对环境胁迫因素具有较强耐受性,以及发酵效率提高的微生物菌种。以下着重介绍近年来启动子的定向进化,包括启动子的强度和调节功能的分子进化,以及细胞全局转录工程等技术在微生物代谢工程中的应用,这些定向进化技术使人们可以更精细地调节基因表达水平,并可同时改变细胞内多个基因的转录水平,是代谢工程研究新的有力工具。  相似文献   

11.
Stoichiometric genome-scale metabolic network models (GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric ratios, other constraints such as enzyme availability and thermodynamic feasibility can also limit the phenotype solution space. Extended GEM models considering either enzymatic or thermodynamic constraints have been shown to improve prediction accuracy. In this paper, we propose a novel method that integrates both enzymatic and thermodynamic constraints in a single Pyomo modeling framework (ETGEMs). We applied this method to construct the EcoETM (E. coli metabolic model with enzymatic and thermodynamic constraints). Using this model, we calculated the optimal pathways for cellular growth and the production of 22 metabolites. When comparing the results with those of iML1515 and models with one of the two constraints, we observed that many thermodynamically unfavorable and/or high enzyme cost pathways were excluded from EcoETM. For example, the synthesis pathway of carbamoyl-phosphate (Cbp) from iML1515 is both thermodynamically unfavorable and enzymatically costly. After introducing the new constraints, the production pathways and yields of several Cbp-derived products (e.g. L-arginine, orotate) calculated using EcoETM were more realistic. The results of this study demonstrate the great application potential of metabolic models with multiple constraints for pathway analysis and phenotype prediction.  相似文献   

12.
应用代谢网络模型解析工业微生物胞内代谢   总被引:2,自引:2,他引:0  
叶超  徐楠  陈修来  刘立明 《生物工程学报》2019,35(10):1901-1913
为了快速、高效地理解工业微生物胞内代谢特征,寻找潜在的代谢工程改造靶点,基因组规模代谢网络模型(GSMM)作为一种系统生物学工具越来越受到人们的关注。文中在回顾GSMM 20年发展历程的基础上,分析了当前GSMM的研究现状,总结了GSMM的构建及分析方法,从预测细胞表型和指导代谢工程两个方面阐述了GSMM在解析工业微生物胞内代谢中的应用,并展望了GSMM未来的发展趋势。  相似文献   

13.
Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design “fine-tuned” metabolic engineering strategies in silico that can be implemented directly with available genomic tools.  相似文献   

14.
Significant advances in system-level modeling of cellular behavior can be achieved based on constraints derived from genomic information and on optimality hypotheses. For steady-state models of metabolic networks, mass conservation and reaction stoichiometry impose linear constraints on metabolic fluxes. Different objectives, such as maximization of growth rate or minimization of flux distance from a reference state, can be tested in different organisms and conditions. In particular, we have suggested that the metabolic properties of mutant bacterial strains are best described by an algorithm that performs a minimization of metabolic adjustment (MOMA) upon gene deletion. The increasing availability of many annotated genomes paves the way for a systematic application of these flux balance methods to a large variety of organisms. However, such a high throughput goal crucially depends on our capacity to build metabolic flux models in a fully automated fashion. Here we describe a pipeline for generating models from annotated genomes and discuss the current obstacles to full automation. In addition, we propose a framework for the integration of flux modeling results and high throughput proteomic data, which can potentially help in the inference of whole-cell kinetic parameters.  相似文献   

15.
Using optimization based methods to predict fluxes in metabolic flux balance models has been a successful approach for some microorganisms, enabling construction of in silico models and even inference of some regulatory motifs. However, this success has not been translated to mammalian cells. The lack of knowledge about metabolic objectives in mammalian cells is a major obstacle that prevents utilization of various metabolic engineering tools and methods for tissue engineering and biomedical purposes. In this work, we investigate and identify possible metabolic objectives for hepatocytes cultured in vitro. To achieve this goal, we present a special data-mining procedure for identifying metabolic objective functions in mammalian cells. This multi-level optimization based algorithm enables identifying the major fluxes in the metabolic objective from MFA data in the absence of information about critical active constraints of the system. Further, once the objective is determined, active flux constraints can also be identified and analyzed. This information can be potentially used in a predictive manner to improve cell culture results or clinical metabolic outcomes. As a result of the application of this method, it was found that in vitro cultured hepatocytes maximize oxygen uptake, coupling of urea and TCA cycles, and synthesis of serine and urea. Selection of these fluxes as the metabolic objective enables accurate prediction of the flux distribution in the system given a limited amount of flux data; thus presenting a workable in silico model for cultured hepatocytes. It is observed that an overall homeostasis picture is also emergent in the findings.  相似文献   

16.
A continuous model of a metabolic network including gene regulation to simulate metabolic fluxes during batch cultivation of yeast Saccharomyces cerevisiae was developed. The metabolic network includes reactions of glycolysis, gluconeogenesis, glycerol and ethanol synthesis and consumption, the tricarboxylic acid cycle, and protein synthesis. Carbon sources considered were glucose and then ethanol synthesized during growth on glucose. The metabolic network has 39 fluxes, which represent the action of 50 enzymes and 64 genes and it is coupled with a gene regulation network which defines enzyme synthesis (activities) and incorporates regulation by glucose (enzyme induction and repression), modeled using ordinary differential equations. The model includes enzyme kinetics, equations that follow both mass-action law and transport as well as inducible, repressible, and constitutive enzymes of metabolism. The model was able to simulate a fermentation of S. cerevisiae during the exponential growth phase on glucose and the exponential growth phase on ethanol using only one set of kinetic parameters. All fluxes in the continuous model followed the behavior shown by the metabolic flux analysis (MFA) obtained from experimental results. The differences obtained between the fluxes given by the model and the fluxes determined by the MFA do not exceed 25% in 75% of the cases during exponential growth on glucose, and 20% in 90% of the cases during exponential growth on ethanol. Furthermore, the adjustment of the fermentation profiles of biomass, glucose, and ethanol were 95%, 95%, and 79%, respectively. With these results the simulation was considered successful. A comparison between the simulation of the continuous model and the experimental data of the diauxic yeast fermentation for glucose, biomass, and ethanol, shows an extremely good match using the parameters found. The small discrepancies between the fluxes obtained through MFA and those predicted by the differential equations, as well as the good match between the profiles of glucose, biomass, and ethanol, and our simulation, show that this simple model, that does not rely on complex kinetic expressions, is able to capture the global behavior of the experimental data. Also, the determination of parameters using a straightforward minimization technique using data at only two points in time was sufficient to produce a relatively accurate model. Thus, even with a small amount of experimental data (rates and not concentrations) it was possible to estimate the parameters minimizing a simple objective function. The method proposed allows the obtention of reasonable parameters and concentrations in a system with a much larger number of unknowns than equations. Hence a contribution of this study is to present a convenient way to find in vivo rate parameters to model metabolic and genetic networks under different conditions.  相似文献   

17.
Metabolic flux analysis (MFA) is a key tool for measuring in vivo metabolic fluxes in systems at metabolic steady state. Here, we present a new method for dynamic metabolic flux analysis (DMFA) of systems that are not at metabolic steady state. The advantages of our DMFA method are: (1) time-series of metabolite concentration data can be applied directly for estimating dynamic fluxes, making data smoothing and estimation of average extracellular rates unnecessary; (2) flux estimation is achieved without integration of ODEs, or iterations; (3) characteristic metabolic phases in the fermentation data are identified automatically by the algorithm, rather than selected manually/arbitrarily. We demonstrate the application of the new DMFA framework in three example systems. First, we evaluated the performance of DMFA in a simple three-reaction model in terms of accuracy, precision and flux observability. Next, we analyzed a commercial glucose-limited fed-batch process for 1,3-propanediol production. The DMFA method accurately captured the dynamic behavior of the fed-batch fermentation and identified characteristic metabolic phases. Lastly, we demonstrate that DMFA can be used without any assumed metabolic network model for data reconciliation and detection of gross measurement errors using carbon and electron balances as constraints.  相似文献   

18.
Dynamic flux balance analysis (DFBA) provides a platform for detailed design, control and optimization of biochemical process technologies. It is a promising modeling framework that combines genome‐scale metabolic network analysis with dynamic simulation of the extracellular environment. Dynamic flux balance analysis assumes that the intracellular species concentrations are in equilibrium with the extracellular environment. The resulting underdetermined stoichiometric model is solved under the assumption of a biochemical objective such as growth rate maximization. The model of the metabolism is coupled with the dynamic mass balance equations of the extracellular environment via expressions for the rates of substrate uptake and product excretion, which imposes additional constraints on the linear program (LP) defined by growth rate maximization of the metabolism. The linear program is embedded into the dynamic model of the bioreactor, and together with the additional constraints this provides an accurate model of the substrate consumption, product secretion, and biomass production during operation. A DFBA model consists of a system of ordinary differential equations for which the evaluation of the right‐hand side requires not only function evaluations, but also the solution of one or more linear programs. The numerical tool presented here accurately and efficiently simulates large‐scale dynamic flux balance models. The main advantages that this approach has over existing implementation are that the integration scheme has a variable step size, that the linear program only has to be solved when qualitative changes in the optimal flux distribution of the metabolic network occur, and that it can reliably simulate behavior near the boundary of the domain where the model is defined. This is illustrated through large‐scale examples taken from the literature. Biotechnol. Bioeng. 2013; 110: 792–802. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Genome‐scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance and turnover number. We applied GECKO to a Saccharomyces cerevisiae GEM and demonstrated that the new model could correctly describe phenotypes that the previous model could not, particularly under high enzymatic pressure conditions, such as yeast growing on different carbon sources in excess, coping with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between and within metabolic pathways. The developed method and model are expected to increase the use of model‐based design in metabolic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号