首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
锌α2-糖蛋白(ZAG)是一种广泛存在于人体内的可溶性糖蛋白,是I 类主要组织相容性复合物(MHC-I)家族中的一员.ZAG被认为是不同类型癌可能的生物标志物,由于它的氨基酸序列与脂质动员因子(LMF)高度同源,因此它被认为是一个新的脂肪因子.它的表达受多种因素调控,在人体内能够发挥重要的功能.ZAG刺激脂肪细胞的脂质分解,并导致一些高分化癌症中脂肪的大量损失.本文主要从ZAG的基因结构、分布和功能等方面进行论述.  相似文献   

2.
锌α 2-糖蛋白(ZAG)是一种广泛存在于人体内的可溶性糖蛋白,是Ι类主要组织相容性复合物(MHC-Ι)家族中的一员。ZAG被认为是不同类型癌可能的生物标志物,由于它的氨基酸序列与脂质动员因子(LMF)高度同源,因此它被认为是一个新的脂肪因子。它的表达受多种因素调控,在人体内能够发挥重要的功能。ZAG刺激脂肪细胞的脂质分解,并导致一些高分化癌症中脂肪的大量损失。本文主要从ZAG的基因结构、分布和功能等方面进行论述。  相似文献   

3.
目的:研究血清锌-α2-糖蛋白(ZAG)、骨硬化蛋白(SOST)及胎球蛋白A(FA)水平与维持性血液透析(MHD)患者冠状动脉钙化的关系及其诊断价值。方法:将2018年1月~2021年4月于我院接受MHD的203例患者纳入研究。将其按照冠状动脉钙化积分分作钙化组133例以及无钙化组70例。分析两组各项基线资料以及实验室指标水平的差异,并以多因素Logistic回归分析明确MHD患者冠状动脉钙化的影响因素。另外,通过受试者工作特征(ROC)曲线分析明确血清ZAG、SOST及FA诊断MHD患者冠状动脉钙化的效能。结果:钙化组年龄及血磷、SOST水平均高于无钙化组,而血清ZAG、FA水平均低于无钙化组(P<0.05)。经多因素Logistic回归分析可得:年龄、血磷以及血清SOST、ZAG、FA均是MHD患者冠状动脉钙化的影响因素(P<0.05)。经ROC曲线分析发现:血清ZAG、SOST及FA联合诊断MHD患者冠状动脉钙化的曲线下面积、灵敏度、特异度以及约登指数均高于上述三项指标单独诊断。结论:血清ZAG、SOST及FA均和MHD患者冠状动脉钙化密切相关,可作为辅助诊断MHD患者冠状动脉钙化的生物学标志物。  相似文献   

4.
阿尔茨海默病(Alzheimer’s disease,AD)是一种与年龄有关的神经退行性疾病,严重危害老年人的身心健康,给社会带来巨大的经济压力。但目前其发病机制尚不完全明确,临床仍无根治的有效方法。Tau蛋白是一种微管相关蛋白质,能够参与维持微管相关结构稳定,具有可溶性且不会聚集。在AD病理状态下,病人脑内Tau蛋白结构和功能异常。异常的Tau蛋白聚集成不可溶的神经纤维缠结,损害微管运输能力,导致病人认知功能障碍。Tau蛋白结构和功能的改变是由多种翻译后修饰过程来调控的,即将特定的化学修饰基团与Tau蛋白N-端或C-端结合,直接改变蛋白质的性质和功能。AD病人脑内Tau蛋白的磷酸化、糖基化、乙酰化及SUMO化等多种翻译后修饰异常,与Tau蛋白的降解和毒性物质的聚集密切相关。本文综述近年来的研究后发现,运动可以通过改善Tau蛋白翻译后的某些异常修饰来预防和改善AD,主要作用方式如下:(1)运动可通过抑制GSK 3β和MAPK等蛋白激酶活性来抑制Tau蛋白的过度磷酸化,可能通过上调PP2A活性来促进Tau蛋白去磷酸化;(2)运动可通过提高GLUT1和GLUT3蛋白质水平,可能通过调节OGA和OGT活性平衡,提高蛋白质O-GlcNAc糖基化水平;(3)运动可能通过AMPK/mTORC1途径抑制p300以及激活SIRT1,降低Tau蛋白乙酰化水平;同时运动还可能通过抑制HDAC6,改善Tau蛋白KXGS基序异常乙酰化程度;(4)运动可能通过调节磷酸化与SUMO化共定位点,改善Tau蛋白异常SUMO化水平。  相似文献   

5.
目的:探讨锌-α2-糖蛋白(ZAG)在肥胖与正常SD大鼠肝脏中的表达情况。方法:采用高脂饮食方法建立雄性肥胖大鼠的动物模型,抽提肥胖和正常大鼠肝脏中的蛋白质,运用免疫印迹技术,检测ZAG的表达情况。结果:成功建立肥胖大鼠动物模型,ZAG在肥胖和正常大鼠肝脏中均有表达,其中肥胖大鼠肝脏表达量增加。结论:ZAG在肝脏中均有表达,尤其是在肥胖大鼠肝脏中表达较多,为进一步研究ZAG的功能提供必要的基础。  相似文献   

6.
锌-α2-糖蛋白(zincα2 glycoprotein,ZAG)是一种新的脂肪因子,它能促进脂肪分解代谢。ZAG与体脂存在一定的联系:恶病质患者体脂减少,血清ZAG浓度显著升高;肥胖患者体脂增多,血清ZAG水平比正常人低;在一些疾病状态下ZAG表达上调,引起体脂下降。本文就不同状态下体脂与ZAG表达之间的关系进行综述。  相似文献   

7.
昆虫嗅觉结合蛋白研究进展   总被引:1,自引:0,他引:1  
吴帆  张莉  邱一蕾  李红亮 《昆虫学报》2021,64(4):523-535
嗅觉结合蛋白是嗅觉系统的第一个参与者,主要表达在嗅觉外周系统淋巴液中,负责识别、结合和转运气味和信息素分子到达嗅觉受体。近些年,随着各种生物新技术的应用,大量昆虫嗅觉结合蛋白被鉴定出来,其各种不同功能得到揭示。本文对近年来嗅觉结合蛋白的分子特征、蛋白结构、功能和应用等方面的研究进展进行总结和综述。总的来说,嗅觉结合蛋白包括气味结合蛋白(odorant-binding proteins, OBPs)、化学感受蛋白(chemosensory proteins, CSPs)和尼曼 匹克C2型蛋白(Niemann-Pick type C2 proteins, NPC2)三大家族,在α-螺旋和β-折叠的基础上形成了相对简单而稳定的球形结构,使它们能适应各种环境和任务,所以嗅觉结合蛋白蛋白具有复杂多样的功能,且这些功能对昆虫生理和行为尤为重要。基于嗅觉结合蛋白功能,研究者已经把它们应用于生物防治、品种选育和制作生物嗅觉传感器等,具有巨大的潜在价值。本综述为昆虫嗅觉结合蛋白后续研究提供了参考信息及一些新的思路。  相似文献   

8.
载脂蛋白E研究进展   总被引:3,自引:0,他引:3  
载脂蛋白E在脂质代谢中发挥重要作用 ,三种亚型 (apoE2 ,apoE3和apoE4 )只有二个部位的氨基酸发生变化 ,呈现出不同的生理作用。apoE4与老年痴呆、心血管疾病的高发性相关 ,而且对各种脑外伤功能的恢复具有负面影响。apoE2则对老年痴呆具有防护作用 ,并与高脂蛋白血症有关。apoE3对机体正常生理功能的发挥起关键作用。体外及动物实验研究表明 ,血浆中的apoE多态性与人体的冠心病、高脂蛋白血症、动脉粥样硬化相关。而脑中的apoE是一种多功能分子 ,在淀粉样蛋白沉积与清除、稳定微管蛋白结构、细胞内信号传导等细胞过程中发挥重要作用 ,其多态性与老年痴呆相关。因此 ,从分子水平研究其结构与功能之间的构效关系 ,对探索相关疾病的发病机制、诊断及治疗具有重要意义。  相似文献   

9.
EN-2(Engrailed-2)蛋白是同源盒蛋白转录因子EN(Engrailed)在脊椎动物中的一个亚型,它能被细胞分泌和内摄,并调节转录和翻译.EN-2蛋白在脊椎动物的胚胎发育过程中具有重要作用,是神经系统喙尾(A-P)轴分化的重要决定因子,并控制着中脑多巴胺能神经元的发育和存活.新近研究发现,EN-2蛋白还具有更多的功能,包括轴突导向等;并且与一些疾病相关,如帕金森病;它还被认为是自闭症一类疾病和乳腺癌的候选基因.本文就EN-2蛋白的结构、分布、功能及其与疾病的关系作一综述.  相似文献   

10.
异常表达的糖蛋白与PD等多种神经退行性疾病有关。糖蛋白组学研究发现,电压门控钠离子通道β4亚基在PD病人脑组织中表达明显增加。为了深入探索β4亚基及其糖链在帕金森发生发展中的作用,采用PD转基因鼠对其表达进行验证,对其潜在的糖基化位点进行定点突变,构建重组表达质粒。结果发现,在新生PD转基因鼠和野生成鼠脑组织中有~38kDa蛋白条带表达,而在新生野生鼠脑组织中不表达;用PNGase F酶处理去除糖链后,~38kDa蛋白条带变成迁移速递更快的较小分子量条带,说明β4亚基是高度糖基化的蛋白,并且其糖基化与生长发育有关。将突变重组质粒转入HEK-293细胞和小鼠神经瘤细胞Neuro2A中表达,结果发现突变型质粒分子量明显低于野生型。为研究β4亚基及其糖链的功能提供了一定的实验数据并打下了基础。  相似文献   

11.
Zinc alpha 2-glycoprotein: a multidisciplinary protein   总被引:1,自引:0,他引:1  
Zinc alpha 2-glycoprotein (ZAG) is a protein of interest because of its ability to play many important functions in the human body, including fertilization and lipid mobilization. After the discovery of this molecule, during the last 5 decades, various studies have been documented on its structure and functions, but still, it is considered as a protein with an unknown function. Its expression is regulated by glucocorticoids. Due to its high sequence homology with lipid-mobilizing factor and high expression in cancer cachexia, it is considered as a novel adipokine. On the other hand, structural organization and fold is similar to MHC class I antigen-presenting molecule; hence, ZAG may have a role in the expression of the immune response. The function of ZAG under physiologic and cancerous conditions remains mysterious but is considered as a tumor biomarker for various carcinomas. There are several unrelated functions that are attributed to ZAG, such as RNase activity, regulation of melanin production, hindering tumor proliferation, and transport of nephritic by-products. This article deals with the discussion of the major aspects of ZAG from its gene structure to function and metabolism.  相似文献   

12.
Crystallographic studies of ligand binding by Zn-alpha2-glycoprotein   总被引:1,自引:0,他引:1  
Zn-alpha2-glycoprotein (ZAG) is a 41 kDa soluble protein that is present in most bodily fluids. The previously reported 2.8 A crystal structure of ZAG isolated from human serum demonstrated the structural similarity between ZAG and class I major histocompatibility complex (MHC) molecules and revealed a non-peptidic ligand in the ZAG counterpart of the MHC peptide-binding groove. Here we present crystallographic studies to explore further the nature of the non-peptidic ligand in the ZAG groove. Comparison of the structures of several forms of recombinant ZAG, including a 1.95 A structure derived from ZAG expressed in insect cells, suggests that the non-peptidic ligand in the current structures and in the structure of serum ZAG is a polyethylene glycol (PEG), which is present in the crystallization conditions used. Further support for PEG binding in the ZAG groove is provided by the finding that PEG displaces a fluorophore-tagged fatty acid from the ZAG binding site. From these results we hypothesize that our purified forms of ZAG do not contain a bound endogenous ligand, but that the ZAG groove is capable of binding hydrophobic molecules, which may relate to its function.  相似文献   

13.
Objectives: The goal of the current study is to determine whether the β-adrenoreceptor (β-AR) plays a role in the anti-obesity and anti-diabetic effects of zinc-α2-glycoprotein (ZAG). Material and methods: This has been investigated in CHO-K1 cells transfected with the human β1-, β2-, β3-AR and in ob/ob mice. Cyclic AMP assays were carried out along with binding studies. Ob/ob mice were treated with ZAG and glucose transportation and insulin were examined in the presence or absence of propranolol. Results: ZAG bound to the β3-AR with higher affinity (Kd 46 ± 1 nM) than the β2-AR (Kd 71 ± 3 nM) while there was no binding to the β1-AR, and this correlated with the increases in cyclic AMP in CHO-K1 cells transfected with the various β-AR and treated with ZAG. Treatment of ob/ob mice with ZAG increased protein expression of β3-AR in gastrocnemius muscle, and in white and brown adipose tissues, but had no effect on expression of β1- and β2-AR. A reduction of body weight was seen and urinary glucose excretion, increase in body temperature, reduction in maximal plasma glucose and insulin levels in the oral glucose tolerance test, and stimulation of glucose transport into skeletal muscle and adipose tissue, were completely attenuated by the non-specific β-AR antagonist propranolol. Conclusion: The results suggest that the effects of ZAG on body weight and insulin sensitivity in ob/ob mice are manifested through a β-3AR, or possibly a β2-AR.  相似文献   

14.
Recent genetic and molecular studies in Arabidopsis and Antirrhinum suggest that mechanisms controlling floral development are well conserved among dicotyledonous species. To assess whether similar mechanisms also operate in more distantly related monocotyledonous species, we have begun to clone homologs of Arabidopsis floral genes from maize. Here we report the characterization of two genes, designated ZAG1 and ZAG2 (for Zea AG), that were cloned from a maize inflorescence cDNA library by low stringency hybridization with the AGAMOUS (AG) cDNA from Arabidopsis. ZAG1 encodes a putative polypeptide of 286 amino acids having 61% identity with the AGAMOUS (AG) protein. Through a stretch of 56 amino acids, constituting the MADS domain, the two proteins are identical except for two conservative amino acid substitutions. The ZAG2 protein is less similar to AG, with 49% identity overall and substantially less similarity than ZAG1 outside the well-conserved MADS domain. Like AG, ZAG1 RNA accumulates early in stamen and carpel primordia. In contrast, ZAG2 expression begins later and is restricted to developing carpels. Hybridization to genomic DNA with the full-length ZAG1 cDNA under moderately stringent conditions indicated the presence of a large family of related genes. Mapping data using maize recombinant inbreds placed ZAG1 and ZAG2 near two loci that are known to affect maize flower development, Polytypic ear (Pt) and Tassel seed4 (Ts4), respectively. The ZAG1 protein from in vitro translations binds to a consensus target site that is recognized by the AG protein. These data suggest that maize contains a homolog of the Arabidopsis floral identity gene AG and that this gene is conserved in sequence and function.  相似文献   

15.
Loss of adipose tissue in cancer cachexia has been associated with tumour production of a lipid-mobilizing factor (LMF) which has been shown to be homologous with the plasma protein zinc-alpha(2)-glycoprotein (ZAG). The aim of this study was to compare the ability of human ZAG with LMF to stimulate lipolysis in vitro and induce loss of body fat in vivo, and to determine the mechanisms involved. ZAG was purified from human plasma using a combination of Q Sepharose and Superdex 75 chromatography, and was shown to stimulate glycerol release from isolated murine epididymal adipocytes in a dose-dependent manner. The effect was enhanced by the cyclic AMP phosphodiesterase inhibitor Ro20-1724, and attenuated by freeze/thawing and the specific beta3-adrenoreceptor antagonist SR59230A. In vivo ZAG caused highly significant, time-dependent, decreases in body weight without a reduction in food and water intake. Body composition analysis showed that loss of body weight could be attributed entirely to the loss of body fat. Loss of adipose tissue may have been due to the lipolytic effect of ZAG coupled with an increase in energy expenditure, since there was a dose-dependent increase in expression of uncoupling protein-1 (UCP-1) in brown adipose tissue. These results suggest that ZAG may be effective in the treatment of obesity.  相似文献   

16.
Loss of adipose tissue in cancer cachexia has been associated with tumour production of a lipid-mobilizing factor (LMF) which has been shown to be homologous with the plasma protein zinc-α2-glycoprotein (ZAG). The aim of this study was to compare the ability of human ZAG with LMF to stimulate lipolysis in vitro and induce loss of body fat in vivo, and to determine the mechanisms involved. ZAG was purified from human plasma using a combination of Q Sepharose and Superdex 75 chromatography, and was shown to stimulate glycerol release from isolated murine epididymal adipocytes in a dose-dependent manner. The effect was enhanced by the cyclic AMP phosphodiesterase inhibitor Ro20-1724, and attenuated by freeze/thawing and the specific β3-adrenoreceptor antagonist SR59230A. In vivo ZAG caused highly significant, time-dependent, decreases in body weight without a reduction in food and water intake. Body composition analysis showed that loss of body weight could be attributed entirely to the loss of body fat. Loss of adipose tissue may have been due to the lipolytic effect of ZAG coupled with an increase in energy expenditure, since there was a dose-dependent increase in expression of uncoupling protein-1 (UCP-1) in brown adipose tissue. These results suggest that ZAG may be effective in the treatment of obesity.  相似文献   

17.
Ketone bodies (KBs) were known to suppress seizure. Untraditionally, neurons were recently reported to utilize fatty acids and produce KBs, but the effect of seizure on neuronal ketogenesis has not been researched. Zinc‐α2‐glycoprotein (ZAG) was reported to suppress seizure via unclear mechanism. Interestingly, ZAG was involved in fatty acid β‐oxidation and thus may exert anti‐epileptic effect by promoting ketogenesis. However, this promotive effect of ZAG on neuronal ketogenesis has not been clarified. In this study, we performed immunoprecipitation and mass spectrometry to identify potential interaction partners with ZAG. The mechanisms of how ZAG translocated into mitochondria were determined by quantitative coimmunoprecipitation after treatment with apoptozole, a heat shock cognate protein 70 (HSC70) inhibitor. ZAG level was modulated by lentivirus in neurons or adeno‐associated virus in rat brains. Seizure models were induced by magnesium (Mg2+)‐free artificial cerebrospinal fluid in neurons or intraperitoneal injection of pentylenetetrazole kindling in rats. Ketogenesis was determined by cyclic thio‐NADH method in supernatant of neurons or brain homogenate. The effect of peroxisome proliferator–activated receptor γ (PPARγ) on ZAG expression was examined by Western blot, quantitative real‐time polymerase chain reaction (qRT‐PCR) and chromatin immunoprecipitation qRT‐PCR. We found that seizure induced ketogenesis deficiency via a ZAG‐dependent mechanism. ZAG entered mitochondria through a HSC70‐dependent mechanism, promoted ketogenesis by binding to four β‐subunits of long‐chain L‐3‐hydroxyacyl‐CoA dehydrogenase (HADHB) and alleviated ketogenesis impairment in a neuronal seizure model and pentylenetetrazole‐kindled epileptic rats. Additionally, PPARγ activation up‐regulated ZAG expression by binding to promoter region of AZGP1 gene and promoted ketogenesis through a ZAG‐dependent mechanism.  相似文献   

18.
A characterization of the MADS-box gene family in maize   总被引:20,自引:2,他引:18  
Studies on distantly related dicot plant species have identified homeotic genes that specify floral meristem identity and determine the fate of floral organ primordia. Most of these genes belong to a family characterized by the presence of a structural motif, the MADS-box, which encodes a protein domain with DNA-binding properties. As part of an effort to understand how such genes may have been recruited during the evolution of flowers with different organ types such as those found in maize, two members of this gene family in maize, ZAG1 and ZAG2, have been characterized previously. Here, the isolation and characterization of four new members of this gene family, designated ZAP1, ZAG3, ZAG4 and ZAG5, are described and the genetic map position of these and 28 additional maize MADS-box genes is determined. The first new member of this family appears to be the Zea mays ortholog of the floral homeotic gene APETALA1 (AP1) and has been designated ZAP1. One of these genes, ZAG4, is unusual in that its deduced protein sequence includes the MADS domain but lacks the K-domain characteristically present in this family of genes. In addition, its copy number and expression varies among different inbreds. A large number of maize MADS-box genes map to duplicated regions of the genome, including one pair characterized here, ZAG3 and ZAG5. These data underscore the complexity of this gene family in maize, and provide the basis for further studies into the regulation of floral organ morphogenesis among the grasses.  相似文献   

19.
Non-conventional major histocompatibility complex class I molecules are involved in a variety of physiological functions, most at the periphery of the immune system per se. Zinc-alpha(2)-glycoprotein (ZAG), the sole soluble member of this superfamily has been implicated in cachexia, a poorly understood yet life-threatening, severe wasting syndrome. To further ascertain the role of ZAG in lipid metabolism and perhaps the immune system, we inactivated both ZAG alleles by gene targeting in mice. Subjecting these ZAG deficient animals to standard or lipid rich food regimens led to increased body weight in comparison to identically treated wild-type mice. This phenotype appeared to correlate with a significant decrease in adipocytic lipolysis that could not be rescued by several pharmacological agents including beta(3)-adrenoreceptor agonists. Furthermore, in contrast to previously reported data, ZAG was found to be ubiquitously and constitutively expressed, with an especially high level in the mouse liver. No overt immunological phenotype was identified in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号