首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
α-甘露糖苷酶(α-mannosidase,α-Man)是真核生物蛋白质N-聚糖修饰的关键酶,其对甘露糖残基的修剪过程是糖蛋白N-糖链复杂化的必要步骤,对蛋白质的合成及正确构象的折叠起决定性作用。根据α-Man的功能特异性,其一般被分为糖基水解酶38家族(glycosyl hydrolase 38 family,GH38)、糖基水解酶47家族(glycosyl hydrolase 47 family,GH47)两个家族。利用生物信息学分析GH38家族与GH47家族在进化上的关系和氨基酸序列保守性以及不同物种内质网Ⅰ型甘露糖苷酶(endoplasmic reticulum ManⅠ,ERManⅠ)的理化性质、结构特点、功能特征后发现,GH47家族比GH38家族在进化上更早且保守性更好;α-Man基因在不同物种中长度存在明显差异,物种越高等基因平均长度越长;真核生物ERManⅠ均为亲水性不稳定蛋白质,其氨基酸序列存在跨膜螺旋并含有信号肽,且蛋白质空间构像为桶状,包含Ca~(2+)结合位点。文中对α-Man的生物信息学分析可以为研究α-Man在生命过程中的作用提供重要的信息。  相似文献   

2.
蛋白质O-甘露糖基化是真核生物中广泛存在的蛋白质翻译后修饰过程,即在甘露糖转移酶(PMT)作用下将长萜酰甘露糖上活化的甘露糖连接到肽链上Ser或者Thr羟基的过程。本文着重介绍在真核生物里真菌和哺乳动物中O-甘露糖基化蛋白的O-甘露聚糖结构、合成过程和生物学意义。  相似文献   

3.
在植物体中,α-甘露糖苷酶(α-man,α-mannosidase)是N-聚糖加工、修饰的关键酶,而N聚糖的加工对于植物生长发育是必不可少的,同时在果实成熟过程中起着重要作用。对甜瓜Ⅱ类α-甘露糖苷酶家族基因的结构特点和表达模式进行分析,为探讨α-甘露糖苷酶基因家族各成员在甜瓜不同组织器官发育中可能存在的作用奠定基础。本研究以甜瓜品种河套蜜瓜为材料,采用RT-PCR方法克隆了该家族的3个成员:Cm MAN1、Cm MAN2和Cm MAN3的全长c DNA,应用生物信息学方法对其相应蛋白质的理化性质、系统发育、保守基序进行了分析。分析研究表明,Cm MAN1、Cm MAN2和Cm MAN3的开放阅读框分别为3 063 bp、3 483 bp和3 024 bp,分别编码1 020、1 160和1 007个氨基酸,均为酸性蛋白质,且在不同物种间具有高度保守性。利用RT-q PCR方法检测了这些基因的表达模式,发现Cm MAN1在成熟甜瓜果实中表达量最高,Cm MAN2在叶、花和子房中表达量相对较高,Cm MAN3在子房中表达量较高,表明α-甘露糖苷酶各基因在甜瓜发育中可能具有不同的作用。  相似文献   

4.
蛋白的糖基化对蛋白的活性、高级结构及功能都有重要的影响。酵母表达的糖蛋白不同于哺乳动物表达的杂合型或复杂型糖蛋白,而是高甘露糖型或过度甘露糖化糖蛋白。在前期成功敲除毕赤酵母α-1,6-甘露糖转移酶(Och1p)基因、阻断毕赤酵母过度糖基化,获得毕赤酵母过度糖基化缺陷菌株GJK01 (ura3、och1) 的基础上,通过表达不同物种来源的α-1,2-甘露糖苷酶I (MDSI) 的活性区与酵母自身定位信号的融合蛋白,并通过DSA-FACE (基于DNA测序仪的荧光辅助糖电泳) 分析筛选报告蛋白HSA/GM-CSF (人血清白蛋白与粒细胞-巨噬细胞集落刺激因子融合蛋白) 的糖基结构,发现当编码酿酒酵母α-1,2-甘露糖苷酶 (MnsI) 基因的内质网定位信号与带有完整C-端催化区的拟南芥MDSI基因融合表达时,毕赤酵母工程菌株能够合成Man5GlcNAc2哺乳动物甘露糖型糖蛋白。这为在酵母体内合成类似于哺乳动物杂合型或复杂型糖基化修饰的糖蛋白奠定了基础。  相似文献   

5.
酵母表达人源化糖蛋白研究进展   总被引:1,自引:0,他引:1  
与人体天然复杂型糖蛋白相比,使用酵母生产的药用蛋白带有高甘露糖型N-糖链。这一差异在临床应用中产生了许多不良影响。目前,可以通过消除酵母特有的内源糖基化反应,引入哺乳动物细胞中的一系列糖基转移酶及转运蛋白对酵母糖基化路径进行改造,从而使其表达出人源化的复杂型N-聚糖。本文介绍了酵母N-糖基化特点、糖基化不均一性,综述了近年来利用基因工程改造酵母N-糖基化路径获得特定的人源N-连接糖蛋白以及使用内切糖苷酶生产人源糖蛋白的研究进展,并且对存在的问题及今后的发展前景进行了讨论。  相似文献   

6.
目的 研究膀胱癌FFPE组织切片的N-连接糖链,发现膀胱癌FFPE肿瘤组织的异常N-连接糖链修饰情况。方法 发展基于FFPE组织切片原位提取N-连接糖链的实验流程。通过PNGase F酶切FFPE组织解释放N-连接糖链。对N-连接糖链自由端进行全甲基化修饰。通过MALDI-TOF/TOF-MS检测N-连接糖链的相对含量。进行数据库匹配,确定N-连接糖链的可能糖型。ROC分析用于预测显著差异N-连接糖链作为预测膀胱癌生物标志物的准确度。结果 MALDI-TOF/TOF-MS检测泛甲基化修饰N-连接糖链的数据显示,在16例膀胱癌患者的肿瘤和癌旁组织的3次重复实验中,肿瘤组织中蛋白质高甘露糖型N2H6、N2H7、N2H8、N2H9和复杂型N5H6F1糖链修饰水平显著上升,同时高甘露糖型N2H5、杂合型N3H5以及复杂型N3H4、N4H4、N5H6F1S2糖链修饰水平显著下降。ROC分析显示,双天线型N-连接糖链N3H4(AUC=0.90)和N4H4(AUC=0.91)在单独或者共同区分膀胱癌患者肿瘤组织和癌旁组织中都具有很好的可靠性,可能成为膀胱癌的潜在生物标志物。结论 膀胱癌FFPE肿瘤组织中存在蛋白质异常N-糖基化修饰,N-连接糖链N3H4和N4H4或可成为膀胱癌的潜在生物标志物。  相似文献   

7.
为培育成熟果实软化程度低,货架期长的番茄植株,以加工番茄甘露糖苷酶基因(α-Man)为编辑对象,设计由番茄U6启动子驱动、长21 bp的guide RNA(gRNA)指导hCas9核酸酶,靶向编辑α-Man的第1个外显子。首先构建基于CRISPR/Cas9系统的植物表达载体,并通过农杆菌介导的遗传转化获得加工番茄转基因株系,然后取转基因番茄叶片基因组DNA,利用限制性内切酶法结合PCR扩增对α-Man编辑位点附近的DNA片段进行检测及测序分析。结果表明,14株转基因番茄植株有2株检测到突变现象。α-Man突变体TA克隆测序结果显示有2种编辑类型,一种表现为52 bp的缺失突变;另一种表现为单碱基突变。实现了对番茄α-Man的编辑。  相似文献   

8.
蛋白质N-糖基化修饰在植物生长发育中发挥重要作用。为探究蛋白质N-糖基化在拟南芥(Arabidopsis thaliana)整个生长周期中的变化规律以及去N-糖基化对拟南芥生根发育的影响, 通过N-糖链酶解和HPLC与MALDI-TOF-MS分析解析了不同生长时期的拟南芥Col-0植株的N-糖链组成(结构和含量)变化。以BSA溶液为阴性对照, 无菌去离子水为空白对照, 用N-糖酰胺酶(PNGase Rz)溶液处理拟南芥幼苗8小时; 然后继续在MS培养基中培养5天、10天, 测量主根长度并检测N-糖链组成的变化。结果显示, 从拟南芥中解析出12种N-糖链结构, 其中包括4个高甘露糖型和8个复杂型。在拟南芥整个生长周期中, 复杂型N-糖链含量始终高于高甘露糖型, 其中含木糖和岩藻糖的复杂型结构是N-糖链的主要组成, 而Man3XylFucGlcNAc2含量最高。高甘露糖型N-糖链含量由幼苗期的13.87%缓慢上升至抽薹期的19.02%, 盛花期回落至17.98%, 而在长角果成熟期快速下降至最低点2.36%, 衰老期再度小幅回升至5.23%。用高浓度糖酰胺酶液PNGase Rz处理后, 可观察到幼苗主根生长受到显著抑制, 且培养10天后仍然无法恢复正常; 而低浓度酶液处理组与阴性对照组差异不显著, 根长和生长状态基本正常。糖链分析结果显示, 与对照组相比, 高、低浓度酶液处理组的N-糖链组成均发生显著变化, 主要表现为高甘露糖型含量显著低于空白对照组, 同时随生长时间的延长该差异逐渐减小, 最终消失。研究表明, 拟南芥N-糖基化组成随着生长发育发生周期性变化, 且去糖基化酶处理能够瞬时影响拟南芥蛋白质N-糖基化修饰, 进而抑制根的发育。  相似文献   

9.
糖基化修饰是蛋白质常见的翻译后修饰之一,通过与糖结合蛋白如凝集素、抗体等相互作用调节肿瘤细胞侵袭、转移的能力及肿瘤异质性。通过化学合成法、化学-酶合成法或释放天然聚糖构建的糖芯片是分析聚糖与糖结合蛋白相互作用的重要工具。文中综述了常见的点制糖芯片的技术及糖芯片在癌症疫苗、单克隆抗体及诊断标志物中的广泛运用。由于肿瘤发生的各个环节都伴随着聚糖结构的改变,利用糖芯片探究肿瘤细胞特异表达的聚糖所参与的生理病理过程具有重大意义。  相似文献   

10.
蛋白质糖基化修饰是哺乳动物中最为常见的一种翻译后修饰,蛋白质的寡糖侧链具有重要的生物学意义,如蛋白质分子间及细胞间相互作用、识别、肿瘤侵袭与转移等.本实验应用寡甘露糖型亲合层析柱、唾液酸型层析柱和O-连接糖蛋白亲合层析柱从血清中序列性提取寡甘露糖型、唾液酸型的N-连接糖蛋白及O-连接的糖蛋白,一维和二维电泳图谱显示血清...  相似文献   

11.
糖基化是蛋白质翻译后修饰主要方式之一。糖基化主要包括N-糖基化和O-糖基化两种方式。肿瘤细胞常常伴随异常的O-糖基化,并且与肿瘤的不良预后具有密切联系。O-聚糖(Tn、s Tn和T抗原)在多种糖基转移酶(T抗原合成酶、唾液酸转移酶等)的帮助下在高尔基体合成。Cosmc是T抗原合成酶唯一的分子伴侣,它可以帮助新合成的T抗原合成酶氨基酸片段正确的折叠,并形成具有生物活性的T抗原合成酶。本文就O-聚糖的结构和一般合成过程做一简要介绍。  相似文献   

12.
维生素A类化合物对糖蛋白N-连接型糖链(简称N-糖链)结构的影响,近年来在研究其作用机制中颇受重视。本文研究视黄酸(RA)对大鼠皮肤上皮基底培养细胞表面膜糖蛋白糖链结构作用,发现RA促进N-糖链合成,使~3H-甘露糖掺入糖链量增加43.5%,RA可改变N-糖链的类型,促进复杂型N-糖链合成,表现为增加三、四天线复杂型N-糖链合成而不是二天线;RA还使含分叉性GIeNAc和核心Fuc的百分比上升。本文还用细胞电泳方法研究膜表面唾液酸相对量,发现RA可引起唾液酸含量下降。结果提示RA对N-糖链结构的影响,是其多种生物学作用的可能途径之一。  相似文献   

13.
黏蛋白是细胞表面的或分泌的、具有高度O-糖基化修饰的糖蛋白.在黏蛋白中,O-聚糖(O-glycan)是通过N-乙酰氨基半乳糖与丝氨酸或苏氨酸之间形成α连接,该结构即被称为黏蛋白型O-聚糖.黏蛋白型O-聚糖是由多肽∶N-乙酰氨基半乳糖转移酶(ppGalNAc-T)家族催化起始合成的,近年来,该酶的催化机制及结构特点已成为糖基转移酶研究的热点.在肿瘤中常常伴随着黏蛋白型O-聚糖结构上和数量上的改变,形成肿瘤特异聚糖结构(cancer-associated glycans),如肿瘤Tn和T抗原等.肿瘤特异聚糖使肿瘤细胞的抗原性和黏附能力发生改变,促进肿瘤细胞的恶性增生与转移.而这些肿瘤特异聚糖结构,也为肿瘤的诊断与抗肿瘤药物或疫苗开发提供了理论基础.  相似文献   

14.
微生物源α-半乳糖苷酶的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了微生物源α-半乳糖苷酶的生理生化特性、合成调控机制的研究进展情况及其在食品、饲料、医药工业等领域的一些应用。Α-半乳糖苷酶均是糖蛋白,不同来源的α-半乳糖苷酶的作用基质特异性差别较大,作用基质特异性差别是由蛋白质部分N-末端氨基酸序列决定的。不同微生物来源的α-半乳糖苷酶其最佳作用条件、pH稳定性及耐热性差异较大。微生物α-半乳糖苷酶是一种诱导酶,其合成受多个基因的调控,高浓度的葡萄糖能抑制其合成。  相似文献   

15.
蛋白质糖基化作为一种翻译后修饰方式不仅在真核生物中广泛存在,而且在原核生物中尤其是放线菌中也存在。本文针对放线菌中的分枝杆菌属、链霉菌属和棒状杆菌属存在的O-甘露糖基化蛋白的聚糖链结构、糖基化过程以及生物学意义加以论述。  相似文献   

16.
O-连接的N-乙酰葡糖胺(O-GlcNAc)修饰是位于细胞浆和细胞核蛋白质的丝氨酸或苏氨酸上的一种翻译后修饰,在高等真核生物细胞中广泛存在.越来越多的研究表明,O-GlcNAc修饰在代谢调控、压力应激、细胞周期、凋亡、糖尿病、心血管疾病和癌症等多种生理和病理过程中发挥重要作用,因此, O-GlcNAc修饰已受到众多生命科学领域研究人员的关注.然而,由于O-GlcNAc修饰与传统的N聚糖和O聚糖修饰有所不同,常规糖基化修饰的检测方法并不适用于O-GlcNAc.本文对O-GlcNAc修饰的检测及其修饰位点的确定方法进行了综述,并分析了各种方法的优缺点.  相似文献   

17.
极性化上皮细胞的质膜因其所含蛋白质、脂质等组分不同,可以分为细胞膜顶端和细胞膜基底侧端两个区域,而新合成的蛋白质向这两个区域的有效分拣是上皮细胞维持其自身极性及正常功能所必需的。细胞膜基底侧端蛋白质的分拣主要由位于该蛋白质胞质区的信号肽所介导,关于这方面的研究是比较深入的;而细胞膜顶端蛋白质的分拣机制目前尚未阐明,因而显得比较复杂。近年来,糖类分子作为生物体内细胞识别和调控过程的信息分子日益受到关注,人们通过干扰聚糖合成、基因突变以及构建糖基化缺陷细胞株等实验方法,逐渐地认识到糖类分子在极性化上皮细胞的蛋白质分拣调节中起重要作用。由于糖分子本身结构非常复杂,而且目前缺乏研究糖类分子的有效手段,使得糖生物学的研究远远落后于蛋白质和核酸的研究。从而导致探讨糖类分子在蛋白质分拣过程的具体机制相对来说比较困难。本综述拟简要概括糖类分子中N-聚糖和O-聚糖在极性化上皮细胞的蛋白质分拣过程中的作用,以及两种聚糖在此过程中行使分拣信号功能的可能机制。  相似文献   

18.
蛋白脂肪酰化修饰是蛋白翻译修饰的重要形式,在细胞信号转导、生长发育和代谢等过程中发挥着重要的作用。N-肉豆蔻酰化和S-酰化是脂肪酰化修饰的两种主要形式,长链的脂肪酸被共价结合到蛋白质上,使蛋白结构发生变化,从而影响细胞的一系列生理作用。近年来,相比于真菌和动物细胞中蛋白脂肪酰化修饰的功能研究而言,植物蛋白质脂酰化修饰及其生物学功能的研究相对较少,且两者并不完全相同,引起了研究人员的广泛关注。研究发现,植物蛋白质N-肉豆蔻酰化和S-酰化修饰过程中分别需要相对应的豆蔻酰基转移酶和S-酰基转移酶来催化,通过对两种转移酶缺失的突变体的研究发现,这两种酰基转移酶的活性与植物种子萌发、花期长短及表型正常化有关;N-肉豆蔻酰化和S-酰化蛋白通过疏水性的酰基键插入膜上相应的位置,进行膜锚定;参与调控植物生长、信号转导及免疫应答等过程。综述了近年来N-肉豆蔻酰化和S-酰化在植物细胞生物学功能中的研究进展,并对植物G蛋白偶联受体(GPCRs)脂质修饰在感知细菌信号分子N-酰基高丝氨酸内脂(AHLs)过程中的作用进行了讨论,旨在为采用遗传干预技术提高农作物生产、优质及抗逆提供理论指导。  相似文献   

19.
酵母N-糖基化工程研究进展   总被引:1,自引:0,他引:1  
詹洁  吴军 《生物技术通讯》2004,15(3):272-274
酵母表达系统可用来生产具生物活性的重组糖蛋白,但其在N-糖基化过程中会生成高甘露糖型糖链。通过引入相关的甘露糖苷酶和糖基转移酶基因、切断酵母自身的高甘露糖链形成通道能够改变酵母宿主N-糖基化的类型。本对酵母N-糖基化工程的研究状况、最新进展及存在问题作简要阐述。  相似文献   

20.
蛋白质的O-GalNAc糖基化是生物体内广泛存在的一种重要的蛋白质翻译后修饰,参与了众多生命活动过程。多肽:N-乙酰氨基半乳糖转移酶(ppGalNAc-T酶)是调控蛋白质O-GalNAc糖基化修饰的起始糖基转移酶,它催化N-乙酰氨基半乳糖(GalNAc)共价结合到蛋白质丝氨酸或苏氨酸的侧链羟基上,形成Tn糖链抗原结构。人体内ppGalNAc-T酶家族共有20个成员,各成员在不同的组织和细胞中的表达具有时空特异性,同时对其修饰的底物蛋白存在选择性。ppGalNAc-T酶的异常表达与组织器官发育,以及肿瘤、家族性钙质沉积、冠心病、阿尔兹海默症、先天性心脏病等复杂性疾病的发生发展密切相关。该文总结了近年来关于ppGalNAc-T酶在组织器官发育过程以及复杂性疾病发生发展中的研究概况,为深入理解ppGalNAc-T酶及O-糖基化的功能及其生物学意义提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号