首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
[背景] 烟曲霉α-1,2-甘露糖苷酶MsdS在高尔基体中将N-糖链Man8GlcNAc2加工为成熟分泌糖蛋白的糖型Man6GlcNAc2,有研究表明MsdS与烟曲霉的形态发生、细胞壁合成及蛋白质分泌密切相关;与烟曲霉不同的是,里氏木霉的成熟分泌糖蛋白上的N-糖链结构为Man8GlcNAc2,细胞却能正常生长,说明丝状真菌N-糖链的加工具有物种特异性,但其生物学意义不明。[目的] 为研究N-糖链加工对里氏木霉细胞生长及蛋白质分泌的影响,本研究将烟曲霉MsdS转入里氏木霉中以改变其成熟分泌糖蛋白的糖型。[方法] 构建带有烟曲霉msdS基因的重组质粒并转入里氏木霉中,获得msdS表达菌株Tr-MsdS,分析Tr-MsdS菌株的生长表型、N-糖组、蛋白质分泌途径和纤维素酶活性的变化。[结果] 在里氏木霉msdS表达菌株Tr-MsdS中,分泌糖蛋白的主要糖型由出发株的Man8GlcNAc2转变为Man6GlcNAc2,细胞壁组分发生变化,但细胞壁完整性未受影响;与出发株相比,Tr-MsdS菌株产孢、出芽及分枝增多;另外,MsdS的表达还影响蛋白质分泌,在50℃时降解纤维素和β-葡聚糖的能力分别提高9.9%和32.2%。[结论] 研究结果表明,N-糖链的加工可影响里氏木霉蛋白质,尤其是纤维素酶的分泌,干扰N-糖链加工可能是提高里氏木酶纤维素酶产量的新策略。  相似文献   

2.
酿酒酵母糖蛋白的N-糖基化经过高尔基体的修饰后形成聚合度约150-200的甘露寡糖,高尔基体N-糖基化的糖基转移酶Mnn1p和Och1p在甘露寡糖的形成过程中起关键作用。通过同源重组置换敲除了酵母中的MNN1OCH1基因阻断高尔基体N-糖基化修饰,分离纯化了mnn1 och1突变株中的N-糖蛋白,糖酰胺酶PNGaseF酶解释放的N-糖链经过2-氨基吡啶衍生后,利用HPLC和MALDITOF/MS结合的方法分析了突变株糖蛋白上的N-糖链。结果显示mnn1 och1突变株中的糖蛋白的N-糖链为结构单一的糖链,分子量为1794.66,推测为Man8GlcNAc2。  相似文献   

3.
不同转移潜能膀胱癌细胞糖组相对定量分析   总被引:1,自引:1,他引:0  
膀胱癌是发生在膀胱黏膜组织上的一种恶性肿瘤,是泌尿系统中最常见的恶性肿瘤,早期(非肌层浸润型膀胱癌)阶段的诊断和治疗是降低膀胱癌死亡率的最有效方式.肿瘤的发生过程与糖链表达的改变有着密切的关系,而定量分析膀胱癌发生过程中糖链的表达变化尚未有研究.本研究以2株人膀胱正常上皮细胞系(HCV29、HUCV1),1株非肌层浸润性膀胱癌细胞系(KK47),和3株浸润性膀胱癌细胞系(YTS1、J82、T24)为研究材料,应用本室建立的利用乙酰肼修饰糖链唾液酸,以及[12C6]-和[13C6]-苯胺同位素修饰糖链还原性末端技术,然后利用基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS),进行膀胱上皮细胞不同病理状态的糖组相对定量分析.从6株细胞中共鉴定出52种N-连接糖链结构,并定量分析了不同类型的糖链在不同细胞中的分布差异,发现唾液酸化、岩藻糖化的N-连接糖链在膀胱癌肿瘤细胞恶化过程中呈现显著升高的趋势,同时平分型糖链和高甘露糖型N-连接糖链也呈表达升高趋势,说明这些糖链结构的表达变化与膀胱癌发生关系密切,从而有助于进一步阐明膀胱癌发生过程中糖链相关的分子机理.  相似文献   

4.
肝脏铁过载是血液系统疾病患者进行骨髓移植后的典型并发症之一,长期铁过载可引发肝脏细胞凋亡和器官损坏,然而铁过载的分子调控机理迄今仍不清楚。以培养的枸橼酸铁铵过载人肝细胞HH4和正常人肝细胞HH4为研究对象,细胞裂解提取总蛋白,分子筛超滤管分离获得总糖肽,PNGase F酶解释放出N-糖链,Sepharose 4B除盐纯化N-糖链,再利用基质辅助激光解析电离飞行时间质谱(MALDI-TOF/TOF-MS)技术比较N-糖链变化情况。同时,采用荧光细胞凝集素免疫组化方法验证糖链分析结果。结果在铁过载人肝细胞和正常细胞中均检测到16种N-糖链,但糖链丰度存在明显差异。与正常人肝细胞相比,铁过载人肝细胞中高甘露糖型糖链的含量降低,而杂合型、复杂型、平分型、岩藻糖化和唾液酸化糖链的含量明显升高。凝集素免疫组化结果显示铁过载后细胞对凝集素Con A的亲和作用减弱,而对PHA-E、AAL、LCA和MAL-II的亲和作用增强,与糖链质谱分析结果相一致。研究为进一步探索人肝细胞铁过载模式下N-糖链表达差异的分子机理提供了技术支持。  相似文献   

5.
糖基化作为一种常见的蛋白质翻译后修饰,对蛋白质的空间结构、生物功能等具有重要的影响.解析糖蛋白糖链结构有助于更清楚地认识糖蛋白及其功能.本研究建立了一种基于超滤膜富集血清中糖蛋白全N-连接糖链,并利用质谱技术对糖链结构进行分析的方法.根据糖蛋白及其糖链结构之间的分子质量差异,利用Millipore公司的10 ku超滤膜富集血清糖蛋白上酶解(PNGase F)释放的全N-连接糖链,并使用MALDI-TOF/TOF-MS解析糖链结构.通过该技术可以从血清中富集并鉴定到23种独特的N-连接的糖链结构,并且利用二级质谱进行了结构确认.该方法可以被用于从大量生物样本中富集糖蛋白全N-连接糖链,可以达到快速、高通量地解析糖蛋白N-连接糖链的目的.  相似文献   

6.
维生素A类化合物对糖蛋白N-连接型糖链(简称N-糖链)结构的影响,近年来在研究其作用机制中颇受重视。本文研究视黄酸(RA)对大鼠皮肤上皮基底培养细胞表面膜糖蛋白糖链结构作用,发现RA促进N-糖链合成,使~3H-甘露糖掺入糖链量增加43.5%,RA可改变N-糖链的类型,促进复杂型N-糖链合成,表现为增加三、四天线复杂型N-糖链合成而不是二天线;RA还使含分叉性GIeNAc和核心Fuc的百分比上升。本文还用细胞电泳方法研究膜表面唾液酸相对量,发现RA可引起唾液酸含量下降。结果提示RA对N-糖链结构的影响,是其多种生物学作用的可能途径之一。  相似文献   

7.
蛋白质糖基化修饰是哺乳动物中最为常见的一种翻译后修饰,蛋白质的寡糖侧链具有重要的生物学意义,如蛋白质分子间及细胞间相互作用、识别、肿瘤侵袭与转移等.本实验应用寡甘露糖型亲合层析柱、唾液酸型层析柱和O-连接糖蛋白亲合层析柱从血清中序列性提取寡甘露糖型、唾液酸型的N-连接糖蛋白及O-连接的糖蛋白,一维和二维电泳图谱显示血清...  相似文献   

8.
本文采用系列凝集素柱层析法,并配合外切糖苷酶处理研究了在视黄酸(RA)作用1—5天过程中人肝癌细胞株SMMC-7721细胞表面N糖链结构的变化。结果表明,RA促进3~H-甘露糖(Man)参入细胞表面N糖链,使高甘露糖型N糖链的百分比下降,复杂型百分比上升,并促进二天线N糖链的生物合成,使多天线特别是四天线和C_2,C_(21)b三天线N糖链的合成减少。结果提示,N糖链结构的这些变化可能是RA诱导SMMC-7721细胞向正常方向分化的结果。  相似文献   

9.
蔡雨衡  向斯  程凯 《微生物学通报》2021,48(11):3996-4005
[背景] 氨氮浓度会明显影响亚硝化单胞菌的活性,但氨氮浓度对吸附态亚硝化单胞菌菌种的抑制动力学尚缺乏研究。[目的] 研究氨氮浓度对3种吸附态亚硝化单胞菌(Nitrosomonas eutropha CZ-4、Nitrosomonas halophila C-19和Nitrosomonas europaea SH-3)的影响。[方法] 以碳酸钙作为吸附基质,设定氨氮浓度为25-1 000 mg/L,测定3种亚硝化单胞菌(N.eutropha CZ-4、N. halophila C-19和N. europaea SH-3)的亚硝氮积累速率与最大比生长速率,并通过Edwares2模型建立氨氧化的抑制动力学方程。[结果] N. halophila C-19在初始氨氮浓度为50-100 mg/L时的亚硝氮积累最快,N. europaea SH-3的亚硝氮积累则在初始氨氮浓度为50-200 mg/L时最快,而N. eutropha CZ-4则适于在初始氨氮浓度为50-400 mg/L时积累亚硝氮;N. eutropha CZ-4的最大比生长速率出现在初始氨氮浓度为50-400 mg/L时,明显高于N. halophila C-19(25-100 mg/L),而N. europaea SH-3的生长速度在初始氨氮浓度为50-800 mg/L区间内无显著差异;N. europaea SH-3的KI(922.76 mg/L)显著高于N. eutropha CZ-4(597.88 mg/L),而CZ-4的KI又显著高于N. halophila C-19(186.24 mg/L),N. europaea SH-3的Km(72.06 mg/L)显著高于N. halophila C-19(23.23 mg/L)。[结论] 3种吸附态亚硝化单胞菌的生长和氨氧化对氨氮浓度变化的响应存在明显差异,对于认识不同亚硝化单胞菌在不同氨氮浓度污水中的功能并开发相应的工程技术具有重要意义。  相似文献   

10.
哺乳动物中约有50%以上的蛋白质都发生了糖基化修饰.连接在丝氨酸或苏氨酸上的O-连接糖链是常见的蛋白质糖基化修饰方式之一,其主要功能是维持与其连接的蛋白质部分的空间构象,保护其免受蛋白酶水解及覆盖某些抗原决定簇.糖链结构的解析有助于更清楚地认识糖蛋白及其功能.本研究建立了一种基于超滤膜辅助(FASP)富集细胞、血清和尿液中糖蛋白全O-连接糖链的方法,根据糖蛋白与其糖链结构之间的分子质量差异,利用10 KD超滤膜富集蛋白质样品中由β消除反应释放的全O-连接糖链,将糖链甲基化修饰后再使用MALDI-TOF/TOF-MS进行解析,同时利用二级质谱进行结构确认.通过上述方法可从标准糖蛋白mucin、细胞、血清和尿液样本中分别鉴定到83、29、33和85种O-连接糖链结构,利用该方法可以从复杂样品中富集和解析糖蛋白全O-连接糖链,实现快速、高效、高通量地解析糖蛋白O-连接糖链的目的.  相似文献   

11.
A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.  相似文献   

12.
Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N‐glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor‐specific N‐glycan alterations in ovarian cancer development and progression. matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N‐glycan distribution on formalin‐fixed paraffin‐embedded ovarian cancer tissue sections from early‐ and late‐stage patients. Tumor‐specific N‐glycans are identified and structurally characterized by porous graphitized carbon‐liquid chromatography‐electrospray ionization‐tandem mass spectrometry (PGC‐LC‐ESI‐MS/MS), and then assigned to high‐resolution images obtained from MALDI‐MSI. Spatial distribution of 14 N‐glycans is obtained by MALDI‐MSI and 42 N‐glycans (including structural and compositional isomers) identified and structurally characterized by LC‐MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N‐glycan families are localized to the tumor regions of late‐stage ovarian cancer patients relative to early‐stage patients. Potential N‐glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3(GlcNAc)2, and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3(GlcNAc)2. The distribution of these markers is evaluated using a tissue microarray of early‐ and late‐stage patients.  相似文献   

13.
Colorectal cancer is the third most common cancer worldwide with an annual incidence of ~1 million cases and an annual mortality rate of ~655,000 individuals. There is an urgent need for identifying novel targets to develop more sensitive, reliable, and specific tests for early stage detection of colon cancer. Post-translational modifications are known to play an important role in cancer progression and immune surveillance of tumors. In the present study, we compared the N-glycan profiles from 13 colorectal cancer tumor tissues and corresponding control colon tissues. The N-glycans were enzymatically released, purified, and labeled with 2-aminobenzoic acid. Aliquots were profiled by hydrophilic interaction liquid chromatography (HILIC-HPLC) with fluorescence detection and by negative mode MALDI-TOF-MS. Using partial least squares discriminant analysis to investigate the N-glycosylation changes in colorectal cancer, an excellent separation and prediction ability were observed for both HILIC-HPLC and MALDI-TOF-MS data. For structure elucidation, information from positive mode ESI-ion trap-MS/MS and negative mode MALDI-TOF/TOF-MS was combined. Among the features with a high separation power, structures containing a bisecting GlcNAc were found to be decreased in the tumor, whereas sulfated glycans, paucimannosidic glycans, and glycans containing a sialylated Lewis type epitope were shown to be increased in tumor tissues. In addition, core-fucosylated high mannose N-glycans were detected in tumor samples. In conclusion, the combination of HILIC and MALDI-TOF-MS profiling of N-glycans with multivariate statistical analysis demonstrated its potential for identifying N-glycosylation changes in colorectal cancer tissues and provided new leads that might be used as candidate biomarkers.  相似文献   

14.
Several studies suggest, that the snail Lymnaea stagnalis contains glycoproteins whose oligosaccharide side chains have structural features not commonly found in mammalian glycoproteins. In this study, prostate glands of L. stagnalis were incubated in media containing either [(3)H]-mannose, [(3)H]-glucosamine, or [(3)H]-galactose, and the metabolically radiolabeled protein-bound oligosaccharides were analyzed. The newly synthesized diantennary-like complex-type asparagine-linked chains contained a considerable amount of glucose, next to mannose, GlcNAc, fucose, galactose, and traces of GalNAc. Since glucose has not been found before as a constituent of diantennary N-linked glycans as far as we know, we assayed the prostate gland of L. stagnalis for a potential glucosyltransferase activity involved in the biosynthesis of such structures. We report here, that the prostate gland of L. stagnalis contains a beta1-->4-glucosyltransferase activity that transfers glucose from UDP-glucose to acceptor substrates carrying a terminal N-acetylglucosamine. The enzyme prefers substrates carrying a terminal GlcNAc that is beta6 linked to a Gal or a GalNAc, structures occurring in O-linked glycans, or a GlcNAc that is beta2 linked to mannose, as is present in N-linked glycans. Based on combined structural and enzymatic data, we propose that the novel beta1-->4-gluco-syltransferase present in the prostate gland may be involved in the biosynthesis of Glcbeta1-->4GlcNAc units in complex-type glycans, in particular in N-linked diantennary glycans.  相似文献   

15.
CA125 is a mucin commonly employed as a diagnostic marker for epithelial ovarian cancer. Induction of humoral responses to CA125 leads to increased survival times in patients with this form of cancer, suggesting a potential role for this mucin in tumor progression. In this study, oligosaccharides linked to CA125 derived from the human ovarian tumor cell line OVCAR-3 were subjected to rigorous biophysical analysis. Sequencing of the O-glycans indicates the presence of both core type 1 and type 2 glycans. An unusual feature is the expression of branched core 1 antennae in the core type 2 glycans. CA125 is also N-glycosylated, expressing primarily high mannose and complex bisecting type N-linked glycans. High mannose type glycans include Man5-Man9GlcNAc2. The predominant N-glycans are the biantennary, triantennary, and tetraantennary bisecting type oligosaccharides. Remarkably, the N-glycosylation profiles of CA125 and the envelope glycoprotein gp120 (derived from H9 lymphoblastoid cells chronically infected with HIV-1) are very similar. The CA125-associated N-glycans have also recently been implicated in crucial recognition events involved in both the innate and adaptive arms of the cell-mediated immune response. CA125 may therefore induce specific immunomodulatory effects by employing its carbohydrate sequences as functional groups, thereby promoting tumor progression. Immunotherapy directed against CA125 may attenuate these immunosuppressive effects, leading to the prolonged survival of patients with this extremely serious form of cancer.  相似文献   

16.
The relative orientation of the 3-arm of N-linked glycans in solution can be determined, in part, by two interresidue nuclear Overhauser enhancements. The existence of one of these enhancements, that observed to the H5 proton of the (alpha 1,3)-linked mannose (attached to the core beta-linked mannose) upon irradiation of the beta-linked mannose H2 proton, has been disputed by other investigators (Homans, S. W., Dwek, R. A., Fernandes, D. L., and Rademacher, T. W. (1983) FEBS Lett. 164, 231-235). To demonstrate unequivocally the existence of this interresidue enhancement, we have synthesized a mannotrioside to model the corresponding moiety in N-linked glycans. Just as in N-linked glycans, the disputed enhancement cannot be directly observed due to spectral overlap with other enhancements but is detectable by careful quantitative analysis. By employing specifically deuterated derivatives of the mannotrioside, however, the disputed enhancement can be directly visualized.  相似文献   

17.
Currently, the definitive diagnosis in breast cancer requires biopsy and histopathology, such the most effective markers are tissue-based. However, the advantages of saliva in collection and storage make it possible for assessing human pathology and contributing to the development of cancer-related biomarkers for clinical application. The present study validated alteration of salivary protein glycopatterns recognized by Bandeiraea simplicifolia lectin I (BS-I) in the saliva of patients with breast diseases using saliva microarrays, and the N/O-glycan profiles of their salivary glycoproteins isolated by the BS-I-magnetic particle conjugates from 259 female subjects (66 healthy volunteers (HV), 65 benign breast cyst or tumor patients (BB), 66 patients with breast cancer in stage I (BC-I) and 62 patients with breast cancer in stage II (BC-II)) were analyzed by MALDI-TOF/TOF-MS. The results showed that the expression level of galactosylated glycans recognized by BS-I was significantly increased in patients with breast cancer compared with HV (p < 0.05). Totally, there were 11/10, 10/19, 7/24 and 7/9 galactosylated N-/O-linked glycans were identified and annotated from the pooled salivary samples of HV, BB, BC-I and BC-II, respectively. One galactosylated N-glycan peak (m/z 2773.977), and 4 galactosylated O-glycan peaks (m/z 868.295, 882.243, 884.270 and 1030.348) were found only in BC-I. These findings could provide pivotal information on galactosylated N/O-linked glycans related to breast cancer, and promote the study of biomarkers for early-stage breast cancer based on precise alterations of galactosylated N/O-glycans in saliva.  相似文献   

18.
Enterococcus faecalis is associated with a high proportion of nosocomial infections; however, little is known of the ability of this organism to proliferate in vivo. The ability of RNase B, a model glycoprotein with a single N-glycosylation site occupied by a family of high-mannose-type glycans (Man(5)- to Man(9)-GlcNAc(2)), to support growth of E. faecalis was investigated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of RNase B demonstrated a reduction in the molecular mass of this glycoprotein during bacterial growth. Further analysis by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry revealed that this mass shift was due to the degradation of all high-mannose-type glycoforms to a single N-linked N-acetylglucosamine residue. High-pH anion-exchange chromatography analysis during exponential growth demonstrated the presence of RNase B-derived glycans in the culture supernatant, indicating the presence of an endoglycosidase activity. The free glycans were eluted with the same retention times as those generated by the action of Streptomyces plicatus endo-beta-N-acetylglucosaminidase H on RNase B. The cleavage specificity was confirmed by MALDI-TOF analysis of the free glycans, which showed glycan species containing only one N-acetylglucosamine residue. No free glycans were detectable after 5 h of bacterial growth, and we have subsequently demonstrated the presence of mannosidase activity in E. faecalis, which releases free mannose from RNase B-derived glycans. We propose that this deglycosylation of glycoproteins containing high-mannose-type glycans and the subsequent degradation of the released glycans by E. faecalis may play a role in the survival and persistence of this nosocomial pathogen in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号