首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
皮肤是身体的最大器官,能够直接与含纳米材料的防晒霜、化妆品等接触,但是人们对纳米材料的皮肤渗透性却了解不多.本文研究了水溶性硫硒化镉(CdSeS)量子点对于活体小鼠皮肤的渗透性和其在体内的代谢情况.量子点溶液被涂于雄性ICR鼠背部脱毛部位.荧光显微像和透射电子显微镜被用于观察量子点在皮肤和器官中的分布,电感耦合等离子体质谱(inductively coupled plasma-mass spectrometry,ICP-MS)用于测量111Cd的含量,以确定量子点在血液和器官中的含量.实验结果表明,量子点能够渗透角质层,并且聚集在角质层的最上面几层角质细胞间和毛囊中.通过血液循环,量子点在肝和肾中沉积严重并且难以清除.如果每只小鼠涂抹0.32nmol量子点,则5天之后肾脏中残存的镉离子浓度仍超过14ng/g.这些结果表明,量子点能够被小鼠透皮吸收,而且对肝和肾产生严重影响.  相似文献   

2.
目的:用二次谐波成像结合双光子荧光成像的方法观察人源胶原蛋白透皮吸收的情况。方法:将荧光标记的人源胶原蛋白(1 mg/mL)涂抹于小鼠表皮层经皮肤吸收1 h后用背向二次谐波观察皮肤内胶原纤维作为真皮层定位标志,用双光子扫描共聚焦显微镜观察人源胶原蛋白透皮吸收深度,吸收方式。结果:二次谐波成像结合双光子荧光成像表明人源胶原蛋白透皮吸收1 h后可观察到荧光信号沿着毛囊聚集,并有部分荧光分子由毛囊扩散至真皮层。结论:二次谐波可以更快速,更灵敏地检测皮肤中的胶原纤维,以此作为检测物质透皮吸收深度的定位标志,具有不受荧光信号干扰的优点。人源胶原蛋白可以沿着毛囊进入真皮层,并从毛囊中扩散至胶原纤维层从而补充皮肤中的胶原纤维。  相似文献   

3.
徐敬明 《四川动物》2005,24(3):436-438
研究民镉暴露实验中黑斑蛙不同器官组织对镉的吸收积累,并对其在不同器官组织中的分布规律进行了分析。结果表明:镉在黑斑蛙器官组织的积累具有选择性,主要积累在肠和肝脏中,其次是皮肤、肌肉,而骨骼中没有积累。  相似文献   

4.
皮肤是人体最大的器官,也为药物的递送提供了重要途径。经皮给药是药物以皮肤为媒介,透过皮肤吸收的途径。因此,皮肤角质层是经皮给药的最大限速障碍。纳米经皮给药系统,具有提高透皮效率、缓释性、避免药物肝首过效应、减少副作用等优点,是通过纳米制剂与皮肤组织之间的相互作用实现的。其中,纳米制剂的结构和组分与其发挥皮肤促渗效用密切相关。对纳米制剂与皮肤质构效关系深入透彻的了解,有助于新型透皮纳米制剂的设计,并利用综合手段构建安全、高效、实用的经皮给药系统。  相似文献   

5.
为了研究渗透吸收促进剂氮酮用量对王不留行黄酮苷软膏剂体外经皮渗透性能的影响及为该化合物经皮给药系统的开发提供参考。本实验采用HPLC测定王不留行黄酮苷的含量,流动相为甲醇和水,检测波长280 nm。选取大鼠背部皮肤,通过Franz垂直扩散池考察王不留行黄酮苷软膏剂透皮性能,结果表明24 h内,不同浓度的氮酮对王不留行黄酮苷软膏剂透皮吸收均有一定的促进作用,其促渗作用为1%氮酮0.5%氮酮5%氮酮3%氮酮0%氮酮。本实验说明氮酮能促进王不留行黄酮苷软膏剂中的王不留行黄酮苷透皮吸收,以1%的氮酮促透效果最佳。  相似文献   

6.
镉对蟾蜍的4种器官乳酸脱氢酶同工酶的影响   总被引:6,自引:0,他引:6  
以腹腔注射法对蟾蜍(Bufo bufo gargarizans)给镉,处理一周后,观察了4种镉中毒浓度(0.1、0.2、0.4、0.8mg/kg)条件下的蟾蜍心、肝、肾和睾丸中乳酸脱氢酶(LDH)同工酶的变化。结果表明:随着镉中毒浓度的升高,心脏LDH同工酶的活性明显升高,睾丸LDH同工酶的活性明显下降,肝中的LDH1、LDH2、LDH3、LDH5在0.4、0.8mg/kg浓度组酶活性明显增加,而LDH4则明显减弱,肾中LDH1的活性随镉浓度的升高而明显升高,其它各酶带活性出现先增强而后又逐渐减弱的现象。结果提示了镉对蟾蜍主要器官LDH同工酶的影响具有组织差异性。  相似文献   

7.
现阶段,临床中常用的镇痛药物多采用口服或注射给药的方式,具全身不良反应多,患者依从性差等缺点,透皮给药作为一种非侵入性给药方式,相对于这些有很多显著的优势,如使用方便,患者痛苦少等。但是,如何克服皮肤的低渗透性一直是该种给药方式发展的瓶颈。近年来,使用超声能量增强镇痛药物在皮肤上的的渗透性成为新的研究热点,各项研究发现,低频超声对药物的增透效果尤为显著。本文通过检索各国文献,对超声介导镇痛药物透皮吸收的原理,临床前试验和临床试验进行综述。  相似文献   

8.
含镉量子点是典型的量子点,近年来受到广泛研究。含镉量子点的潜在毒性是其在生物成像及生物医药方面应用和发展的关键制约因素,因此,对其毒性作用的研究具有重要意义。目前对含镉量子点的体外毒性研究主要集中在人肝癌细胞(HepG2)、神经分泌细胞(PC12)等细胞实验及斑马鱼胚胎体外培养实验。体内毒性研究包括小鼠等动物实验。这些研究证实,量子点对HepG2等细胞系和小鼠、贻贝等动物均具细胞毒性。研究者们普遍认为,量子点是通过释放其组成中的重金属,诱导生物体产生活性氧自由基,进而引发细胞凋亡或自噬,但对量子点的具体毒性作用机制并不完全清楚。该文对含镉量子点的体内和体外毒性研究工作进展进行了综述,包括含镉量子点对肝肾细胞、神经细胞、血液细胞及免疫细胞等体外毒性研究工作,对陆生及水生动物等的体内毒性研究工作,旨在更好、更全面地评估含镉量子点的毒性,为今后对量子点的毒性作用机制研究提供方向,促进含镉量子点在生物医学方面的发展和应用。  相似文献   

9.
镉在中华蟾蜍组织中的分布规律   总被引:3,自引:0,他引:3  
利用原子吸收分光光度计测定了镉在中华蟾蜍不同组织中的含量,并对其在不同器官组织中的分布规律进行了分析。结果表明:镉在中华蟾蜍不同组织中具有选择性,主要积累在肠和肝脏中,其次是精巢、皮肤、卵巢和肌肉,而骨骼中没有积累。  相似文献   

10.
铅与镉在被金鱼吸收积累过程中的相互作用   总被引:5,自引:0,他引:5  
刘长发  陶澍  龙爱民  曹军  徐福留 《生态学报》2001,21(11):1863-1868
采用混合体系暴露和顺次暴露的方法研究了铅和镉在被金鱼吸收过程中的相互作用.结果表明,混合暴露条件下,保持镉暴露量不变,增加铅的投放量,鳃镉与肝镉含量与单独暴露的结果无显著性差异,肾镉含量则随铅暴露浓度增加而减少.保持铅浓度不变,增加镉的投放量可导致鳃和肾铅含量下降.在镉、铅顺序暴露后则没有观测到鳃、肝和肾铅含量的规律性变化.  相似文献   

11.
The skin is the largest organ of the body and is a potential route of exposure to sunscreens and cosmetics containing nanoparticles;however,the permeability of the skin to these nanoparticles is currently unknown.In this paper,we studied the transdermal delivery capacity through mouse skin of water-soluble CdSeS quantum dots(QDs) and the deposition of these QDs in the body.QD solution was coated onto the dorsal hairless skin of male ICR mice.Fluorescence microscopy and transmission electron microscopy(TEM) were used to observe the distribution of QDs in the skin and organs,and inductively coupled plasma-mass spectrometry(ICP-MS) was used to measure the 111Cd content to indicate the concentration of QDs in plasma and organs.Experimental results indicate that QDs can penetrate into the dermal layer and are limited to the uppermost stratum corneum layers and the hair follicles.Through blood circulation,QDs deposit mostly in liver and kidney and are difficult to clear.111Cd concentration was greater than 14 ng g-1 in kidney after 120 h after 0.32 nmol QDs was applied to a mouse.These results suggest that QDs have in vivo transdermal delivery capacity through mouse skin and are harmful to the liver and kidney.  相似文献   

12.
Quantum dots (QDs) are rapidly emerging as an important class of nanoparticles (NPs) with potential applications in medicine. However, little is known about penetration of QDs through human skin. This study investigated skin penetration of QDs in both in vivo and in vitro human skin. Using the tape stripping method, this study demonstrates for the first time that QDs can actually penetrate through the stratum corneum (SC) of human skin. Transmission electron microscope (TEM) and energy diverse X-ray (EDX) analysis showed accumulation of QDs in the SC of a human skin equivalent model (HSEM) after dermal exposure to QDs. These findings suggest possible transdermal absorption of QDs after dermal exposure over a relatively long period of time.  相似文献   

13.
14.
The accumulation of cadmium, its affinity for metallothioneins (MTs), and its relation to copper, zinc, and selenium were investigated in the experimental mudpuppy Necturus maculosus and the common toad Bufo bufo captured in nature. Specimens of N. maculosus were exposed to waterborne Cd (85???g/L) for up to 40?days. Exposure resulted in tissue-dependent accumulation of Cd in the order kidney, gills > intestine, liver, brain > pancreas, skin, spleen, and gonads. During the 40-day exposure, concentrations increased close to 1???g/g in kidneys and gills (0.64?C0.95 and 0.52?C0.76; n?=?4), whereas the levels stayed below 0.5 in liver (0.14?C0.29; n?=?4) and other organs. Cd exposure was accompanied by an increase of Zn and Cu in kidneys and Zn in skin, while a decrease of Cu was observed in muscles and skin. Cytosol metallothioneins (MTs) were detected as Cu,Zn?Cthioneins in liver and Zn,Cu?Cthioneins in gills and kidney, with the presence of Se in all cases. After exposure, Cd binding to MTs was clearly observed in cytosol of gills as Zn,Cu,Cd?Cthionein and in pellet extract of kidneys as Zn,Cu,Cd?Cthioneins. The results indicate low Cd storage in liver with almost undetectable Cd in liver MT fractions. In field trapped Bufo bufo (spring and autumn animals), Cd levels were followed in four organs and found to be in the order kidney > liver (0.56?C5.0???g/g >0.03?C0.72???g/g; n?=?11, spring and autumn animals), with no detectable Cd in muscle and skin. At the tissue level, high positive correlations between Cd, Cu, and Se were found in liver (all r?>?0.80; ???=?0.05, n?=?5), and between Cd and Se in kidney (r?=?0.76; n?=?5) of autumn animals, possibly connected with the storage of excess elements in biologically inert forms. In the liver of spring animals, having higher tissue level of Cd than autumn ones, part of the Cd was identified as Cu,Zn,Cd?Cthioneins with traces of Se. As both species are special in having liver Cu levels higher than Zn, the observed highly preferential Cd load in kidney seems reasonable. The relatively low Cd found in liver can be attributed to its excretion through bile and its inability to displace Cu from MTs. The associations of selenium observed with Cd and/or Cu (on the tissue and cell level) point to selenium involvement in the detoxification of excessive cadmium and copper through immobilization.  相似文献   

15.
The freshwater painted turtle, Chrysemys picta, was used to investigate (a) the distribution of an injected dose of 109Cd in tissues over a period of 192 h (8 days) and (b) the effect of non-isotopic cadmium injection on tissue metal-binding protein levels. Cadmium is cleared from the blood with 9% remaining in the circulation at 192 h. 109Cd is found in all tissues, but is accumulated preferentially in liver, kidney, pancreas, and gastrointestinal tract. The liver is the primary site of Cd accumulation, accounting for 46.4% of the injected dose by 192 h and the highest Cd concentration (cpm/mg tissue). Steroidogenic tissues and the oviduct accumulate significant amounts of 109Cd and the isotope is present in yolk. An increase in tissue metal-binding protein level after non-isotopic CdCl2 injection is consistent with 109Cd distribution, in that metal-binding protein concentration after CdCl2 injection is highest in liver, followed by pancreas and kidney with low, but with significant levels of cadmium-binding protein in gonads and steroid target organs. We conclude that the liver is the major site of storage after a single injection of isotopic cadmium and induction of a metal-binding protein may be an adaptive response to exposure to cadmium.  相似文献   

16.
Abstract

Topical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed.  相似文献   

17.

Aims

This work concentrated on understanding the allocation of Cd recently taken up between the organs of sunflower at early and middle reproductive growth stages. The roles of transpiration and allometry were investigated.

Methods

Sunflowers were grown hydroponically in greenhouse, being exposed to low concentrations of Cd (pCd2+ = 11.03). At flower bud and grain filling stages, plants were exposed for three days to 111Cd and at the same time, subjected or not to fans to increase the transpiration. The partitioning of 111Cd between plant organs measured by high resolution ICP-MS was then modelled.

Results

Although the use of fans increased the plant water uptake and transpiration by about 20%, there were no significant effects on the partitioning of recent Cd. Most of the recent Cd was recovered in roots (60%) and only 2.8% were found in seeds (0.8% for the husk and 2.0% for the almonds). The sequestration of recent Cd in a plant organ was successfully explained by its biomass and except for leaves, by the biomass of other organs acting as competitive sinks.

Conclusions

This work proposes a modelling approach for the partitioning of the labelled Cd between plant organs in sunflower.
  相似文献   

18.
小干扰RNA (Small interfering RNA,siRNA)已被用于各种皮肤病的治疗。然而,由于siRNA具有电负性、极性强、易被核酸酶降解以及难以突破皮肤表皮屏障等缺陷,使其应用受限。因此,安全高效的siRNA递送载体是siRNA有效治疗皮肤病的前提。近年来,随着对siRNA研究的不断深入,基于脂质、聚合物、肽和纳米颗粒的递送系统的开发取得了很大进展,一些新的siRNA透皮递送载体应运而生,如类脂质体、树枝状聚合物、细胞穿透肽、球形核酸纳米颗粒等等。文中将重点介绍近年来siRNA透皮递送载体的最新研究进展。  相似文献   

19.
Recently, quantum dots derived from trace elements like cadmium and selenium have attracted widespread interest in biology and medicine. They are rapidly being used as novel tools for both diagnostic and therapeutic purposes. In this report, we evaluated the distribution of silica-coated cadmium selenide (CdSe) quantum dots (QDs) following intravenous injection into male Swiss albino mice as a model system for determining tissue localization using in vivo fluorescence and ex vivo elemental analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). Trioctylphosphine oxide-capped CdSe quantum dots were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane (APS) as silica precursor. ICP-OES was used to measure the cadmium content to indicate the concentration of QDs in blood, organs and excretion samples collected at predetermined time intervals. Meanwhile, the distribution and aggregation state of QDs in tissues were also investigated in cryosections of the organs by fluorescence microscopy. We have demonstrated that the liver and kidney were the main target organs for QDs. Our systematic investigation clearly shows that most of the QDs were metabolized in the liver and excreted via faeces and urine in vivo. A fraction of free QDs, maintaining their original form, could be filtered by glomerular capillaries and excreted via urine as small molecules within 5 days.  相似文献   

20.
Metallothionein (MT) concentration in gills, liver, and kidney tissues of Persian sturgeon (Acipenser persicus) were determined following exposure to sublethal levels of waterborne cadmium (Cd) (50, 400, and 1,000 μg l−1) after 1, 2, 4, and 14 days. The increases of MT from background levels were 4.6-, 3-, and 2.8-fold for kidney, liver, and gills, respectively. The results showed that MT level change in the kidney is time and concentration dependent. Also, cortisol measurement revealed elevation at the day 1 of exposure and followed by MT increase in the liver. Cd concentrations in the cytosol of experimental tissues were measured, and the results indicated that Cd levels in the cytosol of liver, kidney, and gills increased 240.71-, 32.05-, and 40.16-fold, respectively, 14 days after exposure to 1,000 μg l−1 Cd. The accumulation of Cd in cytosol of tissues is in the order of liver > gills > kidney. Pearson correlation coefficients showed that the MT content in kidney is correlated with Cd concentration, the value of which is more than in liver and gills. Thus, kidney can be considered as a tissue indicator in A. persicus for waterborne Cd contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号