首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
生物的核酶及其功能   总被引:2,自引:0,他引:2  
核酶是有催化功能的RNA,目前发现的核酶可分为两大类(大分子核酶,小分子核酶),共7种(大分子核酶包括第一类内元,RNase的RNA组分;小分子核酶包括锤头型,发夹型,肝炎δ病毒核酶,VS核酶)。本文概括了这些核酶的功能及其在理论和实际(主要是医学)方面的应用情况。  相似文献   

2.
桑花叶萎缩类病毒(Mulberry mosaic dwarf viroid,MMDVd)基因组由单链环状小分子RNA组成,根据预测二级结构可能存在锤头核酶(Hammerhead ribozyme,HH)和疑似发夹核酶(Hairpin ribozyme,HP),但目前还缺乏对核酶活性的研究。本研究使用体外自切割和2,3-环磷酸基测序对核酶活性及自切割位点进行了鉴定,并在发夹核酶Loop1增加一对碱基设计合成了突变核酶MMDVd-HP’,比较了其与MMDVd-HP的活性差异,分析了MMDVd对正常未染病和桑花叶卷叶病相关病毒(Mulberry mosaic leaf roll-associated virus,MMLRaV)阳性桑树的侵染。体外自切割结果显示,所有核酶均成功自切割产生了相应的单体,均有核酶活性。2,3-环磷酸基测序结果显示,腺苷化接头分别连接于第7位的C和302位的A之后,MMDVd-HH的切割位点位于AUC↑处,MMDVd-HP切割位点位于ACA↓处。定量PCR结果显示反应体系中的MMDVd-HP多于MMDVd-HP’,表明MMDVd-HP’更多的发生了切割,活性高于MM...  相似文献   

3.
借助计算机软件分析,设计出能特异性切割HPV11型644nt型644ntE2mNA的核酶。遵循Symons锤头状核酶结构和GUX剪切位点原则,靶序列存在32个剪切位点,通过计算机软件分析核酶的最佳剪切位点,并对底物及核酶的二级结构进行预测及进行相应基因生物学功能和基因同源性分析,筛选出2个锤头结构核酶。针对这两位点设计的核酶分别命名为RZ277和RZ3281。计算机分析显示,两核酶与底物切点两翼碱基形成锤头状结构,切点所在基因序列具有相对松驰的二级结构,位于该基因重要生物功能区内,是核酶的理想攻击区域,通过基因库检索,在已知人类基因中排除了与上述两核酶切点两翼碱基有基因同源性序列的可能性。并非所有的GUX位点(X:C、U、A)或CUX均可作为核酶的最佳剪切切割反应,为下一步将核酶用于细胞内和体内试验打下基础。  相似文献   

4.
 借助计算机软件分析 ,设计出能特异性切割HPV11型 6 4 4ntE2mRNA的核酶 (ribozyme) .遵循Symon′s锤头状核酶结构和GUX剪切位点原则 ,靶序列存在 32个这样的剪切位点 .通过计算机软件分析出核酶的最佳剪切位点 ,并对底物及核酶的二级结构进行预测及进行相应基因生物学功能和基因同源性分析 ,筛选出 2个锤头结构核酶 .针对这两位点设计的核酶分别命名为RZ2 777和RZ32 81.计算机分析显示 ,两核酶与底物切点两翼碱基形成锤头状结构 ,切点所在基因序列具有相对松弛的二级结构 ,位于该基因重要生物功能区内 ,是核酶的理想攻击区域 .通过基因库检索 ,在已知人类基因排除了与上述两核酶切点两翼碱基有基因同源性序列的可能性 .将两核酶用于体外剪切实验取得了良好的实验结果 ,认为借助计算机分析可帮助尽快从多个剪切位点选择出最适核酶  相似文献   

5.
锤头型核酶作用机理的研究进展   总被引:2,自引:0,他引:2  
概述了锤头型核酶的二级结构特征,动力学反应的特点以及核酶切割反应的催化机制,提出了锤头型核酶作用机理有待于深入研究的问题.  相似文献   

6.
桑花叶萎缩类病毒(Mulberry mosaic dwarf viroid, MMDVd)是近些年发现的桑花叶型萎缩病的病原物,本研究利用Mfold等软件和保守序列分析了MMDVd的二级结构及其中存在的核酶,并进一步对类病毒和卫星RNA进行了聚类分析,以期解决其分类和进化地位。结果表明MMDVd的正链存在典型的锤头型核酶结构,自切割位点为AUC,负链存在有疑似发夹型核酶的二级结构,是目前发现的第四个发夹核酶。聚类分析研究中,Pospiviroidae科类病毒单独形成一分支,Avsunviroidae科PLMVd和CChMVd首先与v LTSV聚合,而本研究MMDVd首先与卫星RNA s TRSV、s ArMV聚合,结合MMDVd正负链不同于已知Avsunviroidae科的两个锤头型核酶的结构,表明MMDVd应为一个新的未分类属,对于其核酶的自切割活性及其复制机制,则需要进一步的实验研究来验证。  相似文献   

7.
发夹核酶的研究与应用   总被引:2,自引:0,他引:2  
核酶 (ribozyme)是既能特异识别又能特异切割小分子RNA的核酸内切酶 ,其本身也是RNA ,主要包括发夹核酶、锤头核酶、丁肝病毒、链孢霉属VS和铅依赖性RNA ,共同特点是可逆地切割底物RNA的磷酸二酯键 ,生成 5′ OH和 2′ ,3′ 环磷酸末端。虽然催化产物相似 ,但它们的结构和催化机制却是很不相同的。发夹核酶 (hairpinribozyme)发现于三种不同植物RNA病毒 ,即烟草环点病毒 (tobac coringspotvirus) ,菊苣黄色斑点病毒型 (chico ryyellowmottlevirust…  相似文献   

8.
核酶(Ribozyme)是具有催化RNA切割反应功能的RNA,它可以特异性地切割RN-A。最近,核酶的一级结构已经被证实,其与底物结合时所形成的二级结构如锤头状(Hammerhead)、发夹型(Hairpin)结构,亦得到初步证实。因此,能够设计并人工合成核酶,通过特异性破坏RNA,阻断其功能,从而有效地阻止病毒的复制和繁殖。这是近年来继反义RNA之后发现的又一个抑制基因表达的有力工具,开辟了分子生物学的一个新领域。  相似文献   

9.
丁型肝炎病毒核酶的结构特点与催化作用机制   总被引:2,自引:0,他引:2  
丁型肝炎病毒(HDV)核酶是小核酶的一种,在分子结构和作用机制等方面都有许多不同于其它核酶的特性。以其晶体结构的揭示为基础,近几年对其立体构型及催化机制方面的研究取得了很大进展,尤其是发现HDV核酶的胞嘧啶侧链在生理条件下能发挥一般酸碱催化作用(generalacidbasecatalysis),引起了极大关注。对HDV核酶结构和催化机制的研究,将使核酶被有目的地改造,并极大地推动它在应用方面的研究。  相似文献   

10.
张晓岚  陈农安 《病毒学报》1996,12(4):374-380
以BmNPVIE基因为靶序列,通过计算机设计了3个切割靶序列不同位点的锤头状核酶(Ribozyme)(R47,R208和R687)为了提高核酶的切割效率,把3个核酶串联在一起形成三联的核酶(R426)为使单个核酶之间不相互干扰,改变了茎区II的碱基序列,核酸二级结构计算机模拟显示,这种改变非常成功,为了减少长的侧翼序列对R426的影响,将R426基因克隆到pRG523质粒的cis-核酶之间,限制性  相似文献   

11.
Golden BL 《Biochemistry》2011,50(44):9424-9433
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.  相似文献   

12.
The nucleolytic ribozymes use general acid-base catalysis to contribute significantly to their rate enhancement. The VS (Varkud satellite) ribozyme uses a guanine and an adenine nucleobase as general base and acid respectively in the cleavage reaction. The hairpin ribozyme is probably closely similar, while the remaining nucleolytic ribozymes provide some interesting contrasts.  相似文献   

13.
Bevilacqua PC 《Biochemistry》2003,42(8):2259-2265
Several small ribozymes carry out self-cleavage at a specific phosphodiester bond to yield 2',3'-cyclic phosphate and 5'-hydroxyl termini. Prior mechanistic and structural studies on the HDV ribozymes led to the proposal that the pK(a) of C75 is shifted toward neutrality, making it an effective general acid. Recent mechanistic studies on the hairpin ribozyme have led to models in which protonation of G8 is required for phosphodiester cleavage, either for general acid catalysis or for electrostatic stabilization. Inspection of recent crystal structures of the hairpin ribozyme, including a complex with a vanadate transition state mimic, suggests an alternative model involving general acid-base catalysis with G8 serving as the general base and A38 as the general acid. This model is consistent with the literature on the hairpin ribozyme, including pH-rate profiles of wild-type and mutant ribozymes and solvent isotope effects. General mechanistic considerations for RNA catalysis suggest that the penalty for having general acids and bases with pK(a)s removed from neutrality is not as severe as expected. These considerations suggest that general acid-base catalysis may be a common mechanistic strategy of RNA enzymes.  相似文献   

14.
The active centers of the hairpin and VS ribozymes are both generated by the interaction of two internal loops, and both ribozymes use guanine and adenine nucleobases to accelerate cleavage and ligation reactions. The centers are topologically equivalent and the relative positioning of key elements the same. There is good evidence that the cleavage reaction of the VS ribozyme is catalyzed by the guanine (G638) acting as general base and the adenine (A756) as general acid. We now critically evaluate the experimental mechanistic evidence for the hairpin ribozyme. We conclude that all the available data are fully consistent with a major contribution to catalysis by general acid-base catalysis involving the adenine (A38) and guanine (G8). It appears that the two ribozymes are mechanistically equivalent.  相似文献   

15.
Since their discovery in the 1980s, it has gradually become apparent that there are several functional classes of naturally occurring ribozymes. These include ribozymes that mediate RNA splicing (the Group I and Group II introns, and possibly the RNA components of the spliceosome), RNA processing ribozymes (RNase P, which cleaves precursor tRNAs and other structural RNA precursors), the peptidyl transferase center of the ribosome, and small, self-cleaving genomic ribozymes (including the hammerhead, hairpin, HDV and VS ribozymes). The most recently discovered functional class of ribozymes include those that are embedded in the untranslated regions of mature mRNAs that regulate the gene's translational expression. These include the prokaryotic glmS ribozyme, a bacterial riboswitch, and a variant of the hammerhead ribozyme, which has been found embedded in mammalian mRNAs. With the discovery of a mammalian riboswitch ribozyme, the question of how an embedded hammerhead ribozyme's switching mechanism works becomes a compelling question. Recent structural results suggest several possibilities.  相似文献   

16.
Human hepatitis delta virus (HDV) ribozyme can catalyze self-cleavage reaction in the presence of Mg2+ ions, yielding products with 2',3'-cyclic phosphate and 5'-OH termini as do hammerhead and hairpin ribozymes. Recently, the tertiary structure of 3'-cleaved product of genomic HDV ribozyme was solved by X-ray crystallographic analysis. In this structure three single-stranded regions (SSrA, -B and -C) interacts intricately with hydrogen bonds between bases, phosphate oxygens and 2'-OHs to form nested double pseudoknot structure. Especially two Watson-Crick base pairs, 726G-710C and 727G-709C, between SSrA and SSrC, seems to be important for compact folding. To characterize the necessity of the two base pairs, we performed in vitro selection of active ribozymes using random RNA pool which mutated at 709, 710, 726 and 727. The result indicates that basically one G-C base pair is necessary for the activity.  相似文献   

17.
K S Jeng  A Daniel    M M Lai 《Journal of virology》1996,70(4):2403-2410
The ribozymes of hepatitis delta virus (HDV) have so far been studied primarily in vitro. Several structural models for HDV ribozymes based on truncated HDV RNA fragments, which are different from the hammerhead or the hairpin/paperclip ribozyme model proposed for plant viroid or virusoid RNAs, have been proposed. Whether these structures actually exist in vivo and whether ribozymes actually function in the HDV replication cycle have not been demonstrated. We have now developed an in vivo ribozyme self-cleavage assay capable of detecting self-cleavage of dimer or trimer HDV RNA in vivo. By site-directed mutagenesis and compensatory mutations to disrupt and restore potential base pairing in the ribozyme domain of the full-length HDV RNA according to the various structural models, a close correlation between the detected in vivo and the predicted in vitro ribozyme activities of various mutant RNAs was demonstrated. These results suggest that the proposed in vitro ribozyme structure likely exists and functions during the HDV replication cycle in vivo. Furthermore, the pseudoknot model most likely represents the structure responsible for the ribozyme activity in vivo. All of the mutants that had lost the ribozyme activity could not replicate, indicating that the ribozyme activities are indeed required for HDV RNA replication. However, some of the compensatory mutants which have restored both the cleavage and ligation activities could not replicate, suggesting that the ribozyme domains are also involved in other unidentified functions or in the formation of an alternative structure that is required for HDV RNA replication. This study thus established that the ribozyme has important biological functions in the HDV life cycle.  相似文献   

18.
Human hepatitis delta (HDV) ribozyme is one of small ribozymes, such as hammerhead and hairpin ribozymes, etc. Its secondary structure shows pseudoknot structure composed of four stems (I to IV) and three single-stranded regions (SSrA, -B and -C). The 3D structure of 3'-cleaved product of genomic HDV ribozyme provided extensive information about tertiary hydrogen bonding interactions between nucleotide bases, phosphate oxygens and 2'OHs including new stem structure P1.1. To analyze the role of these hydrogen bond networks in the catalytic reaction, site-specific atomic-level modifications (such as deoxynucleotides, deoxyribosyl-2-aminopurine, deoxyribosylpurine, 7-deaza-ribonucleotide and inosine) were incorporated in the smallest trans-acting HDV ribozyme (47-mer). Kinetic analysis of these ribozyme variants demonstrated the importance of the two W-C base pairs of P1.1 for cleavage; in addition, the results suggest that all hydrogen bond interactions detected in the crystal structure involving 2'-OH and N7 atoms are present in the active ribozyme structure. In most of the variants, the relative reduction in kobs caused by substitution of the 2'-OH group correlated with the number of hydrogen bonds affected by the substitution. However G74 and C75 may have more than one hydrogen bond involving the 2'-OH in both the trans- and cis-acting HDV ribozyme. Moreover, in variants in which N7 was deleted, kobs was reduced 5- to 15-fold, it may suggest that N7 assists in coordinating Mg2+ ions or water molecules which bind with weak affinity in the active structure.  相似文献   

19.
Four small RNA self-cleaving domains, the hammerhead, hairpin, hepatitis delta virus and Neurospora VS ribozymes, have been identified previously in naturally occurring RNAs. The secondary structures of these ribozymes are reasonably well understood, but little is known about long-range interactions that form the catalytically active tertiary conformations. Our previous work, which identified several secondary structure elements of the VS ribozyme, also showed that many additional bases were protected by magnesium-dependent interactions, implying that several tertiary contacts remained to be identified. Here we have used site-directed mutagenesis and chemical modification to characterize the first long-range interaction identified in VS RNA. This interaction contains a 3 bp pseudoknot helix that is required for tertiary folding and self-cleavage activity of the VS ribozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号