首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
The response of the glutathione S-transferase (GST, EC 2.5.1.18) and related proteins of Mytilus edulis to environmental pollution load was assessed. Mussels were reciprocally transplanted between an industrial estuary (Douglas), a rural estuary (Youghal) and a m arine site (Bantry). In addition, m ussels were sam pled along a pollution gradient in an estuary receiving leather tannery effluent (Colligan). These latter m ussels were previously shown to be subject to oxidative stress resulting from the discharges. GST specific activity of cytosolic extracts from the gill and digestive gland tissues was determ ined for all anim als. Specific activity was shown to vary significantly in anim als from different sites, with highest specific activity always observed in sam ples (local and transplanted) taken from the industrial site. By com parison, the m ussels exposed to tannery discharges displayed no significant alteration in GST specific activity. Total intracellular glutathione (GSH) was also determ ined for sam ples taken from the Douglas and Youghal estuaries but no correlation with pollution load was observed. Using FPLC analysis, we observed no specific effect on the relative levels of the GST and the individual GST related proteins in gill or digestive gland sam ples from local or reciprocally transplanted anim als from Douglas or Youghal. The increase in GST specific activity observed in samples from the industrial estuary are indicative of a possible, specific inductive agent at this site. The results from the tannery site, by com parison, indicate that general oxidative stress does not result in elevated G ST specific activity in M. edulis.  相似文献   

2.
We studied how an exposure to an additional stressing factor-dimethoate, might affect detoxifying ability of grasshoppers collected at 5 meadow sites located along a heavy metal pollution gradient. Activities of esterases and enzymes linked with glutathione (GSH) metabolism were assayed 24 h after topical treatment with 0.32 microg dimethoate per insect. Inhibition of acetylcholinesterase (AChE) reaches nearly 50% of the value stated in untreated insects, without significant site-dependent differences. The pesticide also caused a significant decrease in activities of glutathione peroxidase (GPx) followed by a decrease in GSH levels in grasshoppers from all assayed groups, demonstrating high sensitivity of glutathione-dependent metabolism to the additional stressing factor. In the case of glutathione reductase (GR) and carboxylesterases (CarE) the fall of activity was shown especially in insects from less polluted meadows and the reference site. Glutathione reductase (GR) activity in individuals treated with dimethoate did not decrease only in insects from the most contaminated site I. This might suggest the trade-off mechanisms adapting grasshoppers to life in seriously polluted environments.  相似文献   

3.
Biomarkers of oxidative stress such as catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) activity, and malondialdehyde and reduced glutathione content, as well as heavy metal concentrations (HM: Pb, V, Cr, Mn, Co, Ni, Cu, Zn, and Cd), were studied in Dreissena polymorpha tissues. Mussels were collected on three sites located on the Rybinskoe Reservoir different in levels of anthropogenic pressure: the most polluted sites were 1 and 2 and site 3 was relatively clean. Mussels from sites 1 and 2 had higher concentrations of HM (Pb, V, Cr, Mn, Ni, Cu, and Mn) and their response to the pollutant action was manifested in increased processes of lipid peroxidation (LPO), the activation of CAT, and elevated level of GHS.  相似文献   

4.
Responses of biochemical biomarkers were evaluated in gills of immature adult mangrove oyster Crassostrea rhizophorae collected in three estuarine regions along the Brazilian coast. In each region, ten oysters were collected in one reference site (R) located far from pollution sources, and in two polluted sites (P-I and P-II sites) located in another water body with similar characteristics. P-I site is located close to recognized pollution sources while P-II site is in the same water body, but far from pollution sources. At the Paranaguá Bay (Southern Brazil), polluted sites receive domestic, harbor and phosphate fertilizer plant discharges. High lipid peroxides (LPO) content was observed in winter oysters from the P-I site. In summer, higher catalase activity was observed in these oysters. In the Piraquê region (Southeastern Brazil), polluted sites receive domestic and agricultural effluents. Lower total oxyradical scavenging capacity (TOSC) towards peroxyradicals was observed in summer oysters from both P-I and P-II sites. In the Itamaracá region (Northeastern Brazil), polluted sites receive paper mill and caustic soda and chlorine factories effluents. Increased glutathione S-transferase (GST) activity was observed in oysters from the P-I site in both summer and winter. At Paranaguá Bay (higher latitude), no seasonal differences were observed in oysters from the R site, suggesting that temperature was not an important factor influencing biomarkers levels. Lower GST activity was observed in oysters from the R site of the Itamaracá Bay (lower latitude) in winter and summer. Taken together, data obtained point to responses of biomarkers in oysters from polluted sites of the three estuarine regions analyzed, indicating the need for future monitoring of the biological effects of contaminants in these environments. They also point to the relevance to consider both season and latitude as factors influencing biomarker responses in environmental contamination monitoring programs.  相似文献   

5.
A suite of biomarkers was measured in caged mussels at areas impacted by different anthropogenic activities along the Greek coastline to assess biological effects of environmental pollution. Mussels were caged at coastal sites in the vicinity of major cities, in areas influenced by major industries, agricultural practices and in islands away from known sources of pollution. Biomarkers indicative of neurotoxicity (acetylcholinesterase, AchE), oxidative stress (catalase, CAT), phase II biotransformation of xenobiotics (glutathione S-transferase, GST), metal exposure (metallothioneins, MTs) and protein synthesis (RNA:DNA ratio) were measured to assess effects of various types of pollutants. AchE activity proved to be the most responsive biomarker with decreased values at sites influenced by agricultural, urban and industrial activities. Decreased CAT and GST activities and increased MTs levels were recorded at a number of anthropogenic-impacted sites. RNA:DNA ratio showed a biphasic response as both high and low values were found at impacted sites. Principal component analysis clearly distinguished sites receiving pollution inputs from non-polluted sites. The combination of the selected biomarkers used in caged mussels resulted useful in the assessment of the effects of environmental pollution.  相似文献   

6.
The aim of this study was to assess the intensity of enzymatic antioxidative parameters [i.e., superoxide dismutase (SOD), catalase (CAT), and the glutathione peroxidases each selene dependent, GPOX or selene independent, including GSTPx, glutathione S-transferase, and GST] and non-enzymatic antioxidative parameters [i.e., glutathione total (GSH-t), the heat shock proteins of Hsp70, and metallothioneins (Mt)] in the midgut glands of female and male wolf spiders Xerolycosa nemoralis (Lycosidae) exposed to natural stressors (i.e., heat shock and starvation) and anthropogenic stressors (i.e., the organophosphorous pesticide dimethoate) under laboratory conditions. The spiders were collected from two differentially polluted sites both localized in southern Poland: Olkusz, which is heavily polluted with metals, and Pilica, the reference site. In response to the stressing factors, increases in Hsp70 levels, in the concentrations of total glutathione and in the activity levels of glutathione-dependent enzymes (GPOX, GSTPx, and GST) were found in the midgut glands of males. In the females, high levels of activity of CAT and SOD were revealed, as well as an increased percentage of Mt-positive cells. Preexposed females, in comparison to the individuals from the reference site, responded with increased SOD activity, irrespective of the stressing factor. In contrast, the changes in the antioxidative parameters in the midgut glands of male X. nemoralis seem to reflect a short-term reaction to the applied stressors and do not confirm the effects of long-term selection in a polluted environment.  相似文献   

7.
天津地区家蝇抗药性水平及与两种解毒酶的关系   总被引:2,自引:0,他引:2  
用点滴法对采自天津市7个郊区县的7个不同生境野外家蝇种群的抗药性进行了测定并与实验室内的相对敏感种群进行比较;对不同地区家蝇种群进行了羧酸酯酶(carboxylesterase, CarE)和谷胱甘肽S-转移酶(glutathione S-transferase, GSTs)活性检测。结果表明,不同家蝇种群对DDVP、高效氯氰菊酯和残杀威的抗性倍数不同,对DDVP抗性最高为18.563倍,最低为1.885倍;对高效氯氰菊酯最高为14.071倍,最低为1.071倍;对残杀威抗性倍数最高为7.499倍,最低为1.071倍。从CarE平均比活力看,室外家蝇种群CarE的比活力均高于室内相对敏感种群的比活力,CarE活性的分布在敏感种群和不同地区野外种群间具有明显的重叠现象。天津不同地区F2代家蝇GSTs的比活力抗性种群普遍高于室内相对敏感种群,大约在2~4倍之间,不同地区间也具有比较大的差异,而抗药性高的种群GSTs活性也高,GSTs活性变化与不同种群抗性差异是相符的。  相似文献   

8.
Biochemical markers of oxidative stress such as catalase activity, glutathione S-transferase (GST) activity and levels of lipid peroxidation evaluated in terms of thiobarbituric acid reactive substances (TBARS) were measured in the sheaths of the marine phanerogam Posidonia oceanica (L.) Delile experimentally exposed to 0.01, 0.1 and 1 microgHg l(-1) for 48 h. Up to a threshold concentration of 0.1 microg Hg l(-1), an increase in catalase and GST activities and TBARS levels was observed, indicating that the antioxidant mechanisms were overtaxed and could not prevent membrane lipid peroxidation. Paradoxically, at 1 microg Hg l(-1), the damage seemed to decrease, as the lipid peroxidation levels of exposed sheaths were lower than those of controls and as catalase and GST activities were not different from those of controls. A possible rapid induction of phytochelatins detoxifying mercury could occur at this high level of mercury.  相似文献   

9.
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.  相似文献   

10.
11.
Messenger RNA extracted from the livers of normal, phenobarbital-treated, and trans-stilbene oxide-treated rats was translated in a mRNA-dependent protein-synthesizing system. Immunoprecipitation of the translation products by antibodies against the Ya and Yc subunits of glutathione S-transferase detected two polypeptides of molecular weights 23,500 and 25,000. Subsequently, a clone containing glutathione S-transferase sequences was identified from a rat liver double-stranded cDNA library that had been prepared by homopolymeric tailing and cloning into the Pst I site of pBR322. Confirmation of the identity of the clone was obtained by recloning the 550-bp insert DNA into the phage vector M13 and utilizing the single strand recombinant phage DNA in specific hybrid selection of mRNA followed by translation and immunoprecipitation with antibodies to the Ya and Yc subunits. This recombinant phage, M13GST94, was also utilized in a new technique to synthesize 32P-labeled cDNA specific to the glutathione S-transferase insert DNA that was used subsequently in RNA excess solution hybridization to determine the relative concentration of glutathione S-transferase mRNA. Phenobarbital treatment resulted in a 3.2-fold increase in glutathione S-transferase mRNA over levels found in control rats, while trans-stilbene oxide increased glutathione S-transferase mRNA levels 5.7-fold. The DNA sequence of the clone was determined and utilized to propose a partial amino acid sequence.  相似文献   

12.
张征田  庞振凌  夏敏  梁子安  杜瑞卿  彭宇 《生态学报》2011,31(16):4579-4585
为探讨镉(Cd)对机体抗氧化功能及金属硫蛋白(MT)的影响,在室内分别用不添加Cd2 和添加浓度为20 mgkg-1 Cd2 培养基培养的黑腹果蝇来饲喂4种不同生境下(S1,S2,S3和S4)拟水狼蛛,于饲喂5d、10d和20d后,分别测定其体内MT和丙二醛 (MDA)的含量及超抗氧化酶(GST、SOD和CAT)活性。结果表明:1,不同生境拟水狼蛛用不添加Cd2 培养基培养的黑腹果蝇饲喂后,不添加Cd2 对照组拟水狼蛛镉的积累量和MT含量无显著变化,但均显著低于添加Cd2 污染组。添加Cd2 污染组拟水狼蛛镉的积累量和MT含量都显著高于对照组,且均随着饲喂时间的延长而显著升高,具有明显的时间–效应关系(p<0.05)。2,在饲喂5d和10d后,不添加Cd饲喂的拟水狼蛛MDA含量和抗氧化酶系差异都不显著。添加Cd2 污染组(S1,S2和S3)MDA含量显著高于对照组(S4),MDA含量与饲喂时间呈显著正相关(p<0.05);GST、SOD和CAT等抗氧化酶活性污染组显著低于对照组,与饲喂时间呈显著负相关(p<0.05);饲喂20d后,污染组MDA含量和抗氧化酶(SOD和CAT)活性均与对照组无显著差异,但GST活性差异显著。  相似文献   

13.
Biochemical and physiological responses of walleye (Sander vitreus) and perch (Perca flavescens) were studied in four Canadian boreal forest lakes representing a mercury (Hg) exposure gradient. The aim of this study was to assess the effects of Hg and methylmercury (MeHg) on the general physiological condition of fish as well as to gauge the relationship between MeHg and the glutathione (GSH) system in metal-contaminated and reference sites using a series of biomarkers. Walleye from Lake Malartic had the highest liver MeHg concentrations, exhibited lower hepatosomatic indices (HSI) and lower glutathione S-transferase (GST) activity. HSI was negatively related to liver total Hg concentrations in walleye (R2=0.33, n=108, P<0.0001). Glutathione reductase (GR) and GST activity for walleye from Lake Malartic were related to HSI (R2=0.38, n=25, P=0.0010; R2=0.46, n=27, P<0.0001, respectively). In Lake Desjardins-East, where perch had the highest liver MeHg concentrations, glutathione peroxidase selenium dependent activity (GSH-Px SD) and GST activity were negatively related to liver MeHg concentrations (R2=0.39, n=21, P=0.0026; R2=0.22, n=21, P=0.0298, respectively). This study suggests that Hg may induce adverse effects on the physiology and cellular metabolism of walleye and perch at environmentally relevant concentrations.  相似文献   

14.
Glutathione peroxidase (GPx, EC 1.11.1.9) protects cells against oxidative damage by catalyzing the reduction of hydroperoxides with glutathione (GSH). Several attempts have been made to imitate its function for mechanical study and for its pharmacological development as an antioxidant. By replacing the active site serine 9 with a cysteine and then substituting it with selenocysteine in a cysteine auxotrophic system, catalytically essential residue selenocysteine was bioincorporated into GSH-specific binding scaffold, and thus, glutathione S-transferase (GST, EC 2.5.1.18) from Lucilia cuprina was converted into a selenium-containing enzyme, seleno-LuGST1-1, by genetic engineering. Taking advantage of the important structure similarities between seleno-LuGST1-1 and naturally occurring GPx in the specific GSH binding sites and the geometric conformation for the active selenocysteine in their common GSH binding domain-adopted thioredoxin fold, the as-generated selenoenzyme displayed a significantly high efficiency for catalyzing the reduction of hydrogen peroxide by glutathione, being comparable with those of natural GPxs. The catalytic behaviors of this engineered selenoenzyme were found to be similar to those of naturally occurring GPx. It exhibited pH and temperature-dependent catalytic activity and a typical ping-pong kinetic mechanism. Engineering GST into an efficient GPx-like biocatalyst provided new proof for the previous assumption that both GPx and GST were evolved from a common thioredoxin-like ancestor to accommodate different functions throughout evolution.  相似文献   

15.
We describe herein the metabolism of hepoxilin A3 (HxA3) by glutathione S-transferase (GST) into a glutathione conjugate. The reaction was carried out with HxA3 (unlabelled and 14C-labelled) and glutathione (unlabelled and tritium labelled). When two isomers of HxA3 were reacted with GST, two products were formed. Only one product was formed when a single isomer of HxA3 was used. The isomeric product HxB3 was marginally active indicating considerable specificity in the reaction with GST. The products were characterized by retention of tritium from glutathione and by comparison of their migration on high performance liquid chromatography with authentic reference compounds. The products bear the structure, 11-glutathionyl HxA3.  相似文献   

16.
Species turnover of monkey beetle (Scarabaeidae: Hopliini) assemblages along disturbance and environmental gradients was examined at three sites within the arid, winter rainfall Namaqualand region of the succulent Karoo, South Africa. At each site two study plots with comparable vegetation and soils but contrasting management (grazing) histories were chosen, the disturbed sites having fewer perennial shrubs and generally more annuals and bare ground. Beetles collected using coloured pan-traps showed a consistently higher abundance in disturbed sites. Lepithrix, Denticnema and Heterochelus had higher numbers in disturbed plots, while Peritrichia numbers were lower in disturbed areas. Measures of species richness and diversity were consistently higher in the undisturbed sites. Distinctive assemblages of monkey beetles and plants occurred at each site. A high compositional turnover ( diversity) was recorded for both monkey beetles and plants along a rainfall gradient; between-site diversity values ranged from 0.7 to 0.8 (out of a maximum of 1.0). Species turnover of beetles was higher between the disturbed sites along the environmental gradient than the corresponding undisturbed sites. The high monkey beetle species turnover is probably linked to the high plant species turnover, a distinctive feature of succulent Karoo landscapes. Monkey beetles are useful indicators of overgrazing disturbance in Namaqualand, as their pollinator guilds are apparently disrupted by overgrazing. A shift away from perennial and bulb pollinator guilds towards those favouring weedy annuals was observed in disturbed areas. The consequences to ecosystem processes due to the effects of disturbance on monkey beetle communities and the role of monkey beetles as indicators of disturbance is discussed, as well as the implications of disturbance on monkey beetle pollination guilds.  相似文献   

17.
The compound 3-methyleneoxindole (MOI), a photooxidation product of the plant auxin indole-3-acetic acid, functions as an affinity label of the dimeric pi class glutathione S-transferase (GST) isolated from pig lung. MOI inactivates the enzyme to a limit of 14% activity. The k for inactivation by MOI is decreased 20-fold by S-hexylglutathione but only 2-fold by S-methylglutathione, suggesting that MOI does not react entirely within the glutathione site. The striking protection against inactivation provided by S-(hydroxyethyl)ethacrynic acid indicates that MOI reacts in the active site region involving both the glutathione and the xenobiotic substrate sites. Incorporation of [(3)H]MOI up to approximately 1 mol/mol of enzyme dimer concomitant with maximum inactivation suggests that there are interactions between subunits. Fractionation of the proteolytic digest of [(3)H]MOI-modified GST pi yielded Trp38 as the only labeled amino acid. The crystal structure of the human GST pi-ethacrynic acid complex (2GSS) shows that the indole of Trp38 is less than 4 A from ethacrynic acid. Similarly, MOI may bind in this substrate site. In contrast to its effect on the pi class GST, MOI inactivates much less rapidly and extensively alpha and mu class GSTs isolated from the rat. These results show that MOI reacts preferentially with GST pi. Such a compound may be useful in novel combination chemotherapy to enhance the efficacy of alkylating cancer drugs while minimizing toxic side effects.  相似文献   

18.
Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica. Utilizing coexpression with the bacterial selA, selB, and selC genes (encoding selenocysteine synthase, SelB, and tRNA(Sec), respectively) the yield of recombinant seleno-GST was about 2.9 mg/L bacterial culture, concomitant with formation of approximately 85% truncation product as a result of termination of translation at the selenocysteine-encoding UGA codon. The mutations inferred as a result of the introduction of a SECIS element did not affect the glutathione-binding capacity (Km = 53 microM for glutathione as compared to 63 microM for the wild-type enzyme) nor the GST activity (kcat = 14.3 s(-1) vs. 16.6 s(-1)), provided that the catalytic Tyr residue was intact. When this residue was changed to selenocysteine, however, the resulting seleno-GST lost the GST activity. It also failed to display any novel GPX activity towards three standard peroxide substrates (hydrogen peroxide, butyl hydroperoxide or cumene hydroperoxide). These results show that recombinant selenoproteins with internal selenocysteine residues may be heterologously produced in E. coli at sufficient amounts for purification. We also conclude that introduction of a selenocysteine residue into the catalytic site of a glutathione S-transferase is not sufficient to induce GPX activity in spite of a maintained glutathione-binding capacity.  相似文献   

19.
Biomarkers are a widely applied approach in environmental studies. Analyses of cholinesterase (ChE), glutathione S-transferase (GST) and lipid peroxidation (LPO) are biomarkers that can provide information regarding early effects of pollutants at different biochemical levels on an organism. The aim of this study was to evaluate the biomarker approach on a Costa Rican native and relevant species. For this, larvae of gar (Atractosteus tropicus) were exposed to the organophosphorus nematicide, ethoprophos. Acute (96hr) exposure was conducted with pesticide concentrations ranging from 0.1 microg/L to 1 500 microg/L. The 96hr LC50 calculated was 859.7 microg/L. After exposure, three biomarkers (ChE, GST and LPO) were analyzed in fish that survived the acute test. The lowest observed effect concentration (LOEC) regarding ChE activity inhibition was 50 microg/L. This concentration produced a significant inhibition (p<0.05) of the enzyme by 20%. The highest concentration tested without showing any effect on ChE activity and therefore considered as no observed effect concentration (NOEC) was 10 microg/L. Ethoprophos concentration of 400 microg/L caused a ChE inhibition by 79%. In this study, no significant variations (p>0.05) in GST activity and LPO were observed in A. tropicus larvae after exposure to ethoprophos.  相似文献   

20.
Overexpression of a tobacco glutathione S-transferase with glutathione peroxidase activity (GST/GPX) in transgenic tobacco (Nicotiana tabacum L.) enhanced seedling growth under a variety of stressful conditions. In addition to increased GST and GPX activity, transgenic GST/GPX-expressing (GST+) seedlings had elevated levels of monodehydroascorbate reductase activity. GST+ seedlings also contained higher levels of glutathione and ascorbate than wild-type seedlings and the glutathione pools were more oxidized. Thermal or salt-stress treatments that inhibited the growth of wild-type seedlings also caused increased levels of lipid peroxidation. These treatments had less effect on the growth of GST+ seedling growth and did not lead to increased lipid peroxidation. Stress-induced damage resulted in reduced metabolic activity in wild-type seedlings while GST+ seedlings maintained metabolic activity levels comparable to seedlings grown under control conditions. These results indicate that overexpression of GST/GPX in transgenic tobacco seedlings provides increased glutathione-dependent peroxide scavenging and alterations in glutathione and ascorbate metabolism that lead to reduced oxidative damage. We conclude that this protective effect is primarily responsible for the ability of GST+ seedlings to maintain growth under stressful conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号