首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
斯氏油脂酵母在以百草枯作为唯一氮源的培养基中能降解百草枯,但其机制尚不清楚。为分离鉴定斯氏油脂酵母中降解百草枯的相关基因,本研究通过构建斯氏油脂酵母的Fosmid文库,用百草枯作为筛选标记,成功筛选到7个百草枯抗性的大肠杆菌克隆。对阳性克隆插入片段进行了测序分析,并对真核基因进行注释。结果在插入片段中发现了nmrA基因及氮代谢相关基因,nmrA是真菌在限氮的条件下才激活的氮代谢相关基因,能调控激活下游的次级氮代谢基因家族,分解那些不常见的氮源。这提示斯氏油脂酵母可能也具有氮的次级代谢调控机制,在百草枯作为唯一氮源的环境下斯氏油脂酵母能激活次级氮代谢相关基因,分解代谢百草枯。  相似文献   

2.
尖顶羊肚菌液体培养基质与条件的研究   总被引:1,自引:0,他引:1  
通过对尖顶羊肚菌液体培养基质与条件的研究,明确其菌丝生长的最适pH值、最适温度、适宜光照条件、适宜葡萄糖和蛋白胨浓度、适宜培养基,以便应用于尖顶羊肚菌液体菌种的生产和工业发酵。结果表明:菌丝的最适生长温度为2 5℃;最适生长pH值为6 ;葡萄糖和蛋白胨最适浓度分别为2 0 0g/L和10g/L ;菌丝在黑暗环境下生长良好,光照对菌丝生长具有抑制作用;用胡萝卜酵母膏培养基振荡培养形成的菌丝球多,菌丝生长量大;菌丝球在不同培养基中生长,可引起培养液pH值的上升或者下降;菌丝球可利用培养基内的氨基酸,使氨基酸降解,在胡萝卜酵母膏培养基中振荡培养8d的菌液总氨基酸含量较原液减少了36 71% ,亮氨酸、异亮氨酸和甲硫氨酸含量的下降幅度最大  相似文献   

3.
以聚乙烯醇为唯一碳源从环境中筛选获得了高效降解聚乙烯醇的微生物菌株XT11, 初步鉴定为假单胞菌属(Pseudomonas sp.)。对菌株Pseudomonas XT11的生长过程及PVA降解过程进行了研究, 发现该菌株在54 h内可将1 g/L的聚乙烯醇(PVA)降解。同时研究了温度、pH值及酵母膏浓度对该菌株降解PVA的影响, 结果表明其最适温度、pH值和酵母膏浓度分别为30℃、7.0和0.5 g/L。研究了PVA浓度对PVA降解率的影响, 发现随着PVA浓度的增大, PVA的降解率降低。  相似文献   

4.
从长期受油污染的土壤中分离筛选得到的Burkholderia cepaciaX4菌株能高效降解油脂。该菌株降解油脂的最适温度和pH分别为30℃和7.0,菌株降解油脂时适宜的氮源为硫酸铵,适宜碳氮比为4∶1。共基质碳源的添加有利于生物量的迅速增加和油脂降解率的提高,添加适量的葡萄糖能使油脂降解率提高8%~10%。50mg/L Ca2 对菌株生长和油脂降解更有利。在橄榄油浓度高达20g/L条件下最大油脂降解率仍可达83%。在油脂浓度≤2500mg/L时,该菌对油脂的降解符合抑制动力学Monod方程。  相似文献   

5.
以聚乙烯醇为唯一碳源从环境中筛选获得了高效降解聚乙烯醇的微生物菌株XT11,初步鉴定为假单胞菌属(Pseudomonas sp.).对菌株Pseudomonas XT11的生长过程及PVA降解过程进行了研究,发现该菌株在54 h内可将1 g/L的聚乙烯醇(PVA)降解.同时研究了温度、pH值及酵母膏浓度对该菌株降解PVA的影响,结果表明其最适温度、pH值和酵母膏浓度分别为30℃、7.0和0.5 g/L.研究了PVA浓度对PVA降解率的影响,发现随着PVA浓度的增大,PVA的降解率降低.  相似文献   

6.
pH及流加葡萄糖对酵母分批发酵生产谷胱甘肽的影响   总被引:1,自引:0,他引:1  
在5 L的发酵罐中研究了pH及流加葡萄糖对酵母分批发酵生产谷胱甘肽(GSH)的影响。实验考察了不同浓度的流加葡萄糖和不同的恒pH值的分批发酵对于酵母生产GSH产量的变化。实验结果表明,当pH值控制为5.0,流加葡萄糖流速为5g.L-1.h-1,连续流加30 h,可使GSH产量最高,与之前未流加葡萄糖和控制pH相比,其产量提高了6倍。  相似文献   

7.
对利用白腐真菌Coriolus versicolor的菌丝球来催化染料酸性橙的降解作了报道。首先进行了不同初始浓度酸性橙的降解实验。在实验范围内,降解率随着初始浓度的增高而增高,平均降解率在91%左右。建立模型拟合了同一温度下不同初始浓度酸性橙降解的过程。初始浓度在20.99到101.6mg/L之间时,模型计算值与实验值大致吻合。考察了pH和温度对酸性橙降解的影响,发现菌丝球降解酸性橙的最适pH为6.0,温度以32℃左右为最佳。对补充了不同量碳源的酸性橙溶液进行重复分批降解实验表明,碳源的补充对重复分批降解是必不可少的。在重复过程中,降解率呈下降趋势。但在降解染料的同时添加适量的葡萄糖可以使菌丝的使用寿命显著延长。  相似文献   

8.
摘要:目的 微生物油脂可作为制备绿色能源生物柴油的原料。对酵母微生物油脂的生物合成方法进行研究。方法 以斯达油脂酵母Lipomyces starkeyi AS 2.1560为菌种进行微生物油脂生物合成。首先获得大量细胞,将细胞收集后,转移至葡萄糖溶液中进行油脂合成。结果 斯达油脂酵母可在不含有其他营养成分的葡萄糖溶液中快速合成油脂,细胞油脂含量可达到细胞干重的60%以上。菌龄对油脂生成影响不明显,糖浓度过高抑制油脂生成,40 g/L葡萄糖溶液中60 h合成油脂最多,达到65.2%,并有进一步积累的可能,在(0.5~6)×108个/mL,接种细胞的密度越大,油脂合成能力越低。合成油脂成分主要为棕榈酸和油酸。结论 斯达油脂酵母细胞增殖与油脂生物合成可分开进行,其油脂成分与普通动植物油脂成分相似。  相似文献   

9.
以产油酵母圆红冬胞酵母(Rhodosporidium toruloides)作为研究对象,系统地研究了氮、磷、硫限制对其油脂积累的影响,并在3L生物反应器上考察了R.toruloides在C/P摩尔比为1 133.3时初始葡萄糖浓度对油脂生产的影响。结果表明:氮、磷、硫中任意一种营养元素受限,均能促使R.toruloides在胞内积累高于自身干重60%的油脂;通过改变培养基的组成,可以调节油脂中脂肪酸的构成,使油脂中饱和脂肪酸比例高于70%或不饱和脂肪酸比例高于60%。就油脂生产强度及转化效率而言,磷限制优于氮限制或硫限制。当C/P摩尔比相同时,初始葡萄糖浓度越低越有利于油脂生产。对采用不同原料生产微生物油脂的技术有一定指导意义。  相似文献   

10.
油脂下脚料中残油微生物降解初步研究   总被引:1,自引:0,他引:1  
以油脂降解菌Bacillus sp DE-8为出发菌,对油脂下脚料中的残油生物降解条件进行初步研究。结果表明:该菌对油脂下脚料降解条件为:起始pH值为8,接种量4%、摇床转速为150r.min-1、温度为32℃、发酵72h,该菌株对菜籽饼的降解率可达78.8%。  相似文献   

11.
The biodegradation of ring-14C- and methyl-14C-labeled paraquat by the soil yeast Lipomyces starkeyi was studied in vitro. It was found that the degradation of paraquat (acting as a sole source of culture nitrogen) resulted in the accumulation in the extracellular medium of radiolabeled acetic acid. The culture also evolved radiolabeled CO2. The results suggest that the degradation of paraquat by L. starkeyi is associated with the integrity of the cell wall and that disruption or removal of the wall results in a complete loss of degradative capability. A mechanism for the degradation of paraquat by this organism is postulated.  相似文献   

12.
Mechanism of biodegradation of paraquat by Lipomyces starkeyi.   总被引:1,自引:1,他引:0       下载免费PDF全文
The biodegradation of ring-14C- and methyl-14C-labeled paraquat by the soil yeast Lipomyces starkeyi was studied in vitro. It was found that the degradation of paraquat (acting as a sole source of culture nitrogen) resulted in the accumulation in the extracellular medium of radiolabeled acetic acid. The culture also evolved radiolabeled CO2. The results suggest that the degradation of paraquat by L. starkeyi is associated with the integrity of the cell wall and that disruption or removal of the wall results in a complete loss of degradative capability. A mechanism for the degradation of paraquat by this organism is postulated.  相似文献   

13.
The biochemical response of the microorganisms Lipomyces starkeyi (Lod & Rij), Escherichia coli K-12 W3110, Bacillus subtilis 168 (Marburg) and Pseudomonas sp. strain TTO1 to the presence of growth-inhibitory concentrations of paraquat was studied. Paraquat was added to each culture at a concentration previously determined to reduce the culture growth rate by up to 50%. The changes in activity of a number of enzymes previously shown to be associated with the defense of the mammalian system against the action of paraquat were studied. While the response of E. coli was in agreement with that found in other studies of this microorganism and supports a commonly accepted mechanism for paraquat toxicity, the results obtained with L. starkeyi, B. subtilis, and Pseudomonas sp. strain TTO1 suggest that other mechanisms exist for protection against the toxicity of paraquat.  相似文献   

14.
Toxicity of paraquat to microorganisms.   总被引:1,自引:1,他引:0       下载免费PDF全文
The biochemical response of the microorganisms Lipomyces starkeyi (Lod & Rij), Escherichia coli K-12 W3110, Bacillus subtilis 168 (Marburg) and Pseudomonas sp. strain TTO1 to the presence of growth-inhibitory concentrations of paraquat was studied. Paraquat was added to each culture at a concentration previously determined to reduce the culture growth rate by up to 50%. The changes in activity of a number of enzymes previously shown to be associated with the defense of the mammalian system against the action of paraquat were studied. While the response of E. coli was in agreement with that found in other studies of this microorganism and supports a commonly accepted mechanism for paraquat toxicity, the results obtained with L. starkeyi, B. subtilis, and Pseudomonas sp. strain TTO1 suggest that other mechanisms exist for protection against the toxicity of paraquat.  相似文献   

15.
A derepressed and partially constitutive mutant for dextranase of Lipomyces starkeyi was selected after ethyl methane sulphonate mutagenesis by zone clearance on blue dextran agar plates. The mutant produced dextranase when grown on glucose, fructose and sucrose as well as on dextran, and more enzyme was produced by the mutant than by the parental strain when grown on 1% dextran. The pH and temperature optima for the mutant dextranase were 5.5 and 55°C, respectively. Dextranase produced on sucrose produced more isomaltose and less glucose after dextran hydrolysis than the equivalent enzyme produced on dextran. The clinical size dextran (average mol. wt of 75000 ± 25000) yield of mixed culture fermentation with the mutant and Leuconostoc mesenteroides was 94% of the total dextran produced.  相似文献   

16.
Dextranase produced by Lipomyces starkeyi was purified 43-fold, by carboxymethyl-Sepharose chromatography followed by agarose gel-filtration chromatography. The purified enzyme showed four bands by SDS/polyacrylamide gel electrophoresis with estimated mass 74 kDa, 71 kDa, 68 kDa and 65 kDa. This preparation exhibited multiple isoelectric points between 5.6 and 6.1. All the isoelectric forms were active and catalytically similar. The dextranase contained a carbohydrate moiety (8%). The physical properties of the enzyme were pH and temperature optima of 5.0 and 55 degrees C, respectively. This dextranase was stable between pH 2.5 and 7.0 at temperatures below 40 degrees C. Lipomyces dextranase was a typical endodextranase with the final product of dextran hydrolysis being isomalto-oligosaccharides from glucose to isomaltotetrose.  相似文献   

17.
18.
高产油脂酵母菌选育及摇瓶发酵条件的研究   总被引:26,自引:1,他引:25  
经紫外线和EMS复合诱变选育出一株高产油脂的优良酵母菌株,命名为Lipomyces.Starkeyi HL。通过摇瓶培养,对各项与菌体产油脂相关的因素作了单因子实验,确定了摇瓶发酵培养的最佳产油脂条件:碳源,废糖液165.7ml/L;氮源,硫酸铵1.08g/L;C/N:61:1;培养温度为28℃;接种量10%;发酵时间96h; pH5.0。最后可得油脂产量 5.9g/L;菌体生物量 11.0g/L;油脂含量 53.6%。对菌体内油脂组成进行了气相色谱与质谱分析,结果如下:软脂酸33.2%,棕  相似文献   

19.
The potential of accumulation of lipids by Lipomyces starkeyi when grown on sewage sludge was assessed. On a synthetic medium, accumulation of lipids strongly depended on the C/N ratio. The highest content of lipids was measured at a C/N-ratio of 150 with 68% lipids of the dry matter while at a C/N-ratio of 60 only 40% were accumulated. Within a pH range from 5.0 to 7.5 the highest lipid accumulation was found at pH 5.0 while the highest yield per litre was pH 6.5. Although sewage sludge had no inhibitory effects on growth or accumulation on L. starkeyi when added to synthetic medium, there was no significant growth on untreated sewage sludge. However, pretreatment of sludge by alkaline or acid hydrolysis, thermal or ultrasonic treatment lead to accumulation of lipids by L. starkeyi with highest values of 1 g L(-1) obtained with ultrasound pre-treatment. Based on the content of free fatty acids and phosphorus, lipids accumulated from sewage sludge could serve as a substrate for the production of biodiesel.  相似文献   

20.
The DEX gene encoding an extracellular dextranase from Lipomyces starkeyi was cloned into vector pPIC9k-His6 and was expressed in Pichia pastoris GS115 strain under the control of AOX1 promoter. After 107 h of the 5L-scaled fermentation, wet cells weight of the recombinant P. pastoris Mut(+) strain reached to 588.6g/L, and the concentration of dextranase and enzyme activity in the supernatant were 0.46 g/L and 83900 U/L, respectively. The activity of dextranase was improved 17.56-fold by cation-exchange chromatography only with a final yield of 71.61% and the specific activity of the purified enzyme was 181.96 U/mg. The purified dextranase, analyzed by SDS-PAGE and Western blotting, showed only one homogeneous band. Then the factors affecting the dextranase activity were evaluated. The optimal temperature and pH was 30 degrees C and pH 4.5, respectively. Metal ions Al(3+), Cu(2+), Fe(3+), and SDS could completely inhibit the enzyme activity, whereas Mg(2+) enhanced 145% of the enzyme activity. These characters are much different from what was previously reported for the L. starkeyi dextranase that was either expressed in S. cerevisiae or purified from natural L. starkeyi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号