首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
将巨大芽孢杆菌(Bacillus megaterium)α-淀粉酶基因克篷到短小芽饱杆菌(Bacilluspumilus)中获得表达。将该工程菌发酵液的上清液,经硫酸铵分级盐析和DEAE-纤维素柱层析,得到纯化的α-淀粉酶。此酶的最适pH为6.0;在pH 5—8之间稳定;最适反应温度为55℃;金属离子Zn2+、Ab2+、Cu2+、Ag+对酶有明显的抑制作用;Ca2+、Na+,K+对酶略有激活作用:3 x 10-3mol/L对氯汞苯甲酸(PCMB)对酶有95%的抑制作用;其免疫性质与枯草芽孢杆菌(Bacillus subtilis)所产生的α-淀粉酶相同。  相似文献   

2.
短小芽孢杆菌289(pBX96)α-淀粉酶的性质   总被引:1,自引:0,他引:1  
将巨大芽孢杆菌(Bacillus megaterium)α-淀粉酶基因克篷到短小芽饱杆菌(Bacilluspumilus)中获得表达。将该工程菌发酵液的上清液,经硫酸铵分级盐析和DEAE-纤维素柱层析,得到纯化的α-淀粉酶。此酶的最适pH为6.0;在pH 5—8之间稳定;最适反应温度为55℃;金属离子Zn2+、Ab2+、Cu2+、Ag+对酶有明显的抑制作用;Ca2+、Na+,K+对酶略有激活作用:3 x 10-3mol/L对氯汞苯甲酸(PCMB)对酶有95%的抑制作用;其免疫性质与枯草芽孢杆菌(Bacillus subtilis)所产生的α-淀粉酶相同。  相似文献   

3.
重组超耐热酸性α-淀粉酶的分离纯化及其性质研究   总被引:14,自引:0,他引:14  
基因工程菌所产生的重组超耐热酸性α-淀粉酶,通过超滤浓缩、脱盐和聚丙烯酰胺垂直板凝胶电泳进行纯化,得到电泳纯的超耐热酸性α-淀粉酶,纯化倍数为11.7,活力回收率为29.8%。用SDSPAGE测得该酶的分子量为55kD,酶的等电点pI(室温)为5.0,以可溶性淀粉为底物的Km值为1.12gL,用硫酸酚法测得其含糖量为15.4%。该酶的最适反应温度为95℃,最适反应pH值为4.5。在pH4.0~7.0室温放置48h酶活没有变化,110℃保温1h残留60%活力。Cr3 、Fe2 、Cu2 抑制酶的活性,Ca2 对酶活无影响。EDTA和DTT对酶的活性无影响。  相似文献   

4.
黑曲霉Tx-78耐酸性α-淀粉酶的分离纯化及其性质研究   总被引:3,自引:0,他引:3  
从酒由中选育得到产耐酸性α-淀粉酶的嗜酸性黑曲霉菌株Tx-78,经酒精沉淀,CM52和DE52纤维素离子交换层析对该酶进行纯化,通过SDS-PAGE检验其纯度并测得其分子量为74 ku.该耐酸性α-淀粉酶具有显著的热稳定性及酸稳定性.其最适反应温度与pH分别为70℃和pH 4.0.当反应温度低于60℃时,该酶在pH 4.0条件下可保持稳定活性达3 h以上.Ca2 、Ba2 对提高酶活力具有明显作用.薄层层析表明该酶制剂水解淀粉最终产物主要为麦芽糖和葡萄糖.  相似文献   

5.
产α-淀粉酶菌株的分离、鉴定及酶学性质研究   总被引:2,自引:0,他引:2  
目的:筛选高产α-淀粉酶菌株,为工业生产α-淀粉酶提供储备菌株。方法:利用碘液显色法和摇瓶发酵法,从土壤中筛选产α-淀粉酶菌株;通过菌落形态、菌体特征观察和16S rDNA序列比对对菌种进行鉴定;发酵粗酶液经硫酸铵沉淀、透析脱盐后,对其酶学性质进行初步研究。结果:从土壤中筛选到一株高产α-淀粉酶菌株,枯草芽孢杆菌Bacillus subtilis XL-15。该菌株所产α-淀粉酶的最适反应温度为50℃,最适作用pH为6.5;Ca2 和Mn2 对酶有激活作用,而Cu2 、Zn2 和EDTA对酶有抑制作用;酶的动力学研究测出米氏常数Km值为1.726mg/mL。结论:该菌株是产α-淀粉酶的较好材料,且具有一定的应用前景。  相似文献   

6.
分离得到1株产生淀粉酶的菌株,通过扩增和测定16S rDNA序列并进行比对,发现是Paenibacillus属的细菌。液体摇瓶发酵结束后,其产生的生淀粉酶比酶活达108.5U/mL。通过饱和(NH4)2SO4沉淀、Sephacryl S-300层析的方法对其所产的生淀粉酶进行分离纯化,得到纯化的酶蛋白比酶活为5112.04U/mg,纯化倍数为14.1,相对分子质量约为1.0×105。该酶以木薯生淀粉为底物时,最适pH5.6,最适温度50℃。金属离子Ca2+、Mg2+对该酶具有激活作用,Zn2+、Cu2+、Fe2+、Ni2+、Mn2+、Co2+和EDTA2-对该酶均具有抑制作用。  相似文献   

7.
获得低温淀粉酶高产菌株,确定该菌株所产淀粉酶的酶学性质.从大黑山(大连)污泥中筛选菌株,通过菌株的形态特征、生理生化和16S rDNA序列鉴定确定其种属,对其酶学性质进行初步研究.获得1株低温淀粉酶高产菌株C2,经鉴定其为微小杆菌属,C2所产低温淀粉酶最适反应温度为25℃,酶的热稳定性比较差,最适pH为7.5,Ca2+和Fe2+对该酶有激活作用,Cu2+、Ni2+、Go2+等抑制酶活性.经薄层层析(TLC)鉴定酶解产物为葡萄糖,说明该菌株具有产生低温淀粉糖化酶的能力.菌株C2所产淀粉酶符合低温淀粉酶性质,值得进一步研究.  相似文献   

8.
采用RT-PCR法扩增马铃薯夏波蒂的α-淀粉酶成熟肽基因,将其亚克隆至毕赤酵母表达载体pPIC9k上,SacII线性化重组表达载体,电击转化毕赤酵母GS115感受态细胞,构建重组酵母GS115/pPIC9k-amy,利用锥虫蓝法筛选获得高活性转化子(GSamyA5),以终浓度为0.5%甲醇诱导该重组菌表达α-淀粉酶,通过Ni~(2+)-NTA agarose亲和层析纯化,并对其酶学性质进行研究。结果表明:该酶的最适反应温度为45℃,40~50℃酶活较稳定,保温50 min,残留相对活力达92.6%;最适反应pH值为6.0,并在pH 6.0~7.0范围内酶活保持稳定。Ca~(2+)、K~+可促进酶反应,以Ca~(2+)影响为最,相对酶活力提高到125%;Cu~(2+),Fe~(2+),Fe~(2+),Zn~(2+)对该酶有显著抑制作用;Mn~(2+),Mg~(2+)对酶有微弱抑制作用,Li~+、Na~+对酶活影响不大。  相似文献   

9.
从富含淀粉的土样中筛选到一株酸性α-淀粉酶产生菌,经生理生化分析和16S rDNA序列测定,鉴定为枯草芽孢杆菌(Bacillus subtilis),命名为B.subtilis B6.这株菌产生的酸性淀粉酶的最适作用pH为5.0,最适作用温度为55℃,酶活性对Ca2+没有依赖性,Fe2+,Mn2+等对酶活性没有明显地抑制作用,Mg2+有较明显的促进作用.  相似文献   

10.
嗜热放线菌莱斯氏属RHA1菌株发酵液经过(NH4)2SO4(饱和度为60%)沉淀后,经过分子筛层析纯化获得一种低分子量α-淀粉酶,分子量为11.2 kD.对此酶研究表明,其pH值范围为4.5 -11.5,在pH值为5.5 -6.5之间酶活性较高,最大酶活性的pH值为6.0;此酶在缺乏Ca2+时,最适温度为55 - 60℃,当加入Ca2+后,相对最适温度上升至65℃;然而EDTA(10 mmol/L)可使此酶的酶活性降低98%,同样在Ni2+、Ag2+和Fe2+条件下酶活性也受到干扰;此α-淀粉酶具有淀粉内切酶活性,水解直链淀粉和支链淀粉的主要产物为小分子低聚糖(D2 - D3).  相似文献   

11.
An alkalophilic bacterial strain was isolated from the soil sample of Assam, North-East India. This strain was found capable of growing and producing α-amylase at extremely alkaline pH (12.5). By molecular characterization, this bacterium was identified as Bacillus licheniformis strain AS08E. Statistical optimization of media components resulted in 3-fold increase in the production of α-amylase from this bacterium. From this strain, a major extracellular α-amylase of ∼55 kDa was purified to homogeneity with a 14.5-fold increase in its specific activity. The N-terminal sequence of this enzyme showed extensive identity with α-amylases purified from thermostable bacteria. The purified enzyme showed optimum activity at pH 10.0 and 80 °C, and demonstrated stability toward various surfactants, organic solvents, and commercial laundry detergents. The spectroflurometric analysis suggests that the enzyme has a strong binding affinity toward soluble starch. TLC analysis of starch degradation product displays this α-amylase as a high maltose-forming enzyme. The future application of this enzyme in food and detergent industries is highly promising.  相似文献   

12.
Pectate lyase (PEL) has been purified by hydrophobic, cation exchange and size exclusion column chromatographies from ripe banana fruit. The purified enzyme has specific activity of 680 +/- 50 pkat mg protein(-1). The molecular mass of the enzyme is 43 kDa by SDS-PAGE. The pI of the enzyme is 8 with optimum activity at pH 8.5. Analysis of the reaction products by paper and anion exchange chromatographies reveal that the enzyme releases several oligomers of unsaturated galacturonane from polygalacturonate. The K(m) values of the enzyme for polygalacturonate and citrus pectin (7.2% methylation) are 0.40 +/- 0.04 and 0.77 +/- 0.08 g l(-1), respectively. PEL is sensitive to inhibition by different phenolic compounds, thiols, reducing agents, iodoacetate and N-bromosuccinimide. The enzyme has a requirement for Ca(2+) ions. However, Mg(2+) and Mn(2+) can substitute equally well. Additive effect on the enzyme activity was observed when any two metal ions (out of Mg(2+), Ca(2+) and Mn(2+)) are present together. The banana PEL is a enzyme requiring Mg(2+), in addition to Ca(2+), for exhibiting maximum activity.  相似文献   

13.
Dipeptidyl peptidase IV is an ectopeptidase with multiple physiological roles including the degradation of incretins, and a target of therapies for type 2 diabetes mellitus. Divalent cations can inhibit its activity, but there has been little effort to understand how they act. The intact membrane-bound form of porcine kidney dipeptidyl peptidase IV was purified by a simple and fast procedure. The purified enzyme hydrolyzed Gly-Pro-p-nitroanilide with an average V(max) of 1.397±0.003 μmol min(-1) mL(-1), k(cat) of 145.0±1.2 s(-1), K(M) of 0.138±0.005 mM and k(cat)/K(M) of 1050 mM(-1) s(-1). The enzyme was inhibited by bacitracin, tosyl-L-lysine chloromethyl ketone, and by the dipeptidyl peptidase IV family inhibitor L-threo-Ile-thiazolidide (K(i) 70 nM). The enzyme was inhibited by the divalent ions Ca(2+), Co(2+), Cd(2+), Hg(2+) and Zn(2+), following kinetic mechanisms of mixed inhibition, with K(i) values of 2.04×10(-1), 2.28×10(-2), 4.21×10(-4), 8.00×10(-5) and 2.95×10(-5) M, respectively. According to bioinformatic tools, Ca(2+) ions preferentially bound to the β-propeller domain of the porcine enzyme, while Zn(2+) ions to the α-β hydrolase domain; the binding sites were strikingly conserved in the human enzyme and other homologues. The functional characterization indicates that porcine and human homologues have very similar functional properties. Knowledge about the mechanisms of action of divalent cations may facilitate the design of new inhibitors.  相似文献   

14.
Li J  Chi Z  Wang X 《Microbiological research》2010,165(3):173-182
The SAP6 gene (without signal sequence) encoding Metschnikowia reukaufii acid protease was amplified by PCR and fused to the expression vector pET-24a(+). The carboxy-terminal 6x His-tagged recombinant acid protease (rSAP6) was expressed from pET-24a(+)SAP6-6His in Escherichia coli BL21 (DE3) and purified with affinity chromatography using a Ni-NTA column. SDS-PAGE analysis and Western blotting revealed that the molecular mass of the purified rSAP6 was 54kDa. The optimal temperature and pH of the purified rSAP6 were 40 degrees C and 3.4, respectively. The enzyme was stable below 45 degrees C and between pH 2.6 and 5.0. The results show that Mn(2+) had an activating effect on the enzyme, while Cu(2+), Mg(2+), Zn(2+) and Ag(+) acted as inhibitors of the enzyme. However, Ca(2+) had no effect on the enzyme activity. The purified rSAP6 was characterized as an aspartic protease as it was inhibited by aspartic protease-specific inhibitors, such as pepstatin. It was also found that the purified rSAP6 had milk-clotting activity.  相似文献   

15.
N-Acylethanolamines including anandamide (an endogenous ligand for cannabinoid receptors) are released from N-acylphosphatidylethanolamine (N-acyl-PE) by the catalysis of a phosphodiesterase of the phospholipase D type. The enzyme was solubilized from the particulate fractions of rat heart with the aid of octyl glucoside, and partially purified by anion-exchange chromatography. The enzyme hydrolyzed N-palmitoyl-PE with a specific activity of 17 nmol/min/mg protein at 37 degrees C. The enzyme activity increased dramatically up to 30-fold by millimolar order of Ca(2+). Ca(2+) could be replaced with other divalent cations such as Co(2+), Mg(2+), Mn(2+), Ba(2+), Sr(2+) and Ni(2+). The hydrolysis of N-arachidonoyl-PE (a precursor of anandamide) was also markedly stimulated by Ca(2+).  相似文献   

16.
从野生苋属植物 (Amaranthuspaniculatus)籽实中分离纯化出α淀粉酶的一种新型蛋白质类抑制剂 .该抑制剂被命名为WAI 1 .MALDI TOF质谱测得其分子量为 986 5 ,是目前报道的α 淀粉酶的蛋白质类抑制剂中分子量最小的 .初步的组成和结构分析结果表明 ,WAI 1由 9个氨基酸残基组成 ,其N端为焦谷氨酸 .直接用RP HPLC纯化后 ,WAI 1能在弱酸性条件下 ,以非竞争性抑制作用方式有效抑制美洲蜚蠊消化道α淀粉酶的活性 ,最适抑制pH 6 0 ,但对人唾液淀粉酶活性无影响 .WAI 1在 37℃下与酶预温浴约 30min后显示最大抑制活性 .当α淀粉酶用量一定时 ,α淀粉酶活性的抑制率在约 5 0 %的范围内随抑制剂 酶比例的增大而呈线性增加 ,超过 5 0 %后 ,抑制率随抑制剂 酶比例的增大而缓慢上升 ,最终达到最大值 (约 6 5 % ) .  相似文献   

17.
The first ribonuclease (RNase) from the Cytophaga-Flavobacterium-Bacteroides phylum, dominant in the marine environment, and also from the first Bizionia species isolated from the tropics was purified and characterized. Extracellular RNase production occurred when the culture medium contained 5-7% (w/v) NaCl. The 53.0 kDa enzyme was purified 29 folds with a recovery of 4% and specific activity of 630unit/mg protein. The pH and temperature optima are 6.5 and 35 degrees C, respectively and the enzyme retains more than half of its activity (relative to optimal assay conditions) after 1h pre-incubation separately with 5% (w/v) NaCl or from pH 5.0 to 8.5 or at 50 degrees C. Dithiothreitol and beta-mercaptoethanol do not inhibit whereas human placental RNase inhibitor protein halves the RNase activity. While Mg(2+), Ba(2+) and Ca(2+) enhanced the enzyme activity, Fe(2+), Cu(2+) and Hg(2+) inactivated it. This RNase degrades uracil containing nucleic acids only. Our isolate could be a novel renewable source of deoxyribonuclease (DNase)--free RNase enzyme.  相似文献   

18.
A glucuronan lyase extracted from Sinorhizobium meliloti strain M5N1CS was purified to homogeneity by anion-exchange chromatography. The purified enzyme corresponds to a monomer with a molecular mass of 20 kDa and a pI of 4.9. A specific activity was found only for polyglucuronates leading to the production of 4,5-unsaturated oligoglucuronates. The enzyme activity was optimal at pH 6.5 and 50 degrees C. Zn(2+), Cu(2+), and Hg(2+) (1 mM) inhibited the enzyme activity. No homology of the enzyme N-terminal amino acid sequence was found with any of the previously published protein sequences. This enzyme purified from S. meliloti strain M5N1CS corresponding to a new lyase was classified as an endopolyglucuronate lyase.  相似文献   

19.
A protein bifunctional inhibitor of endogenous α-amylase and subtilisin has been isolated from wheat grain and purified. The inhibitor specifically inactivates α-amylase isozymes with high isoelectric point values (group α-AMY1) and has almost no effect on the α-AMY2 isozymes with low isoelectric point values. This enzyme does not belong to glycoproteins and has a molecular weight of 21 kDa and an isoelectric point of 7.2. The protein displays a relatively high thermostability and pH optimum of 8.0; its inhibitory activity requires the presence of Ca2+ cations. The inhibition of excess α-amylase in wheat grain with a low falling number by the purified protein is studied.  相似文献   

20.
An extracellular halophilic α-amylase was purified from Nesterenkonia sp. strain F using 80 % ethanol precipitation and Q-Sepharose anion exchange chromatography. The enzyme showed a single band with an apparent molecular weight of 110 kDa by SDS-PAGE. The amylase exhibited maximal activity at pH 7-7.5, being relatively stable at pH 6.5-7.5. Optimal temperature for the amylase activity and stability was 45 °C. The purified enzyme was highly active in the broad range of NaCl concentrations (0-4 M) with optimal activity at 0.25 M NaCl. The amylase was highly stable in the presence of 3-4 M NaCl. Amylase activity was not influenced by Ca2?, Rb?, Li?, Cs?, Mg2? and Hg2?, whereas Fe3?, Cu2?, Zn2? and Al3?) strongly inhibited the enzyme activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. K(m) value of the amylase for soluble starch was 6.6 mg/ml. Amylolytic activity of the enzyme was enhanced not only by 20 % of water-immiscible organic solvents but also by acetone, ethanol and chloroform. Higher concentration (50 %) of the water-miscible organic solvents had no significant effect on the amylase activity. To the best of our knowledge, this is the first report on increased activity of a microbial α-amylase in the presence of organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号