首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like many other receptor tyrosine kinases (RTKs), platelet-derived growth factor (PDGF) receptor β (PDGFR-β) is internalized and degraded in lysosomes in response to PDGF stimulation, which regulates many aspects of cell signalling. However, little is known about the regulation of PDGFR-β endocytosis. Given that ligand binding is essential for the rapid internalization of RTKs, the events induced by the ligand binding likely contribute to the regulation of ligand-induced RTK internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. In this communication, we examined the role of PDGFR-β kinase activity, PDGFR-β dimerization and PDGFR-β C-terminal motifs in PDGF-induced PDGFR-β internalization. We showed that inhibition of PDGFR-β kinase activity by chemical inhibitor or mutation did not block PDGF-induced PDGFR-β endocytosis, suggesting that the kinase activity is not essential. We further showed that dimerization of PDGFR-β is essential and sufficient to drive PDGFR-β internalization independent of PDGFR-β kinase activation. Moreover, we showed that the previously reported 14 amino acid sequence 952-965 is required for PDGF-induced PDGFR-β internalization. Most importantly, we showed that this PDGFR-β internalization motif is exchangeable with the EGFR internalization motif (1005-1017) in mediating ligand-induced internalization of both PDGFR-β and EGFR. This indicates a common mechanism for the internalization of both PDGFR-β and EGFR.  相似文献   

2.
Wang Q  Zhu F  Wang Z 《Experimental cell research》2007,313(15):3349-3363
Most studies regarding the role of epidermal growth factor (EGF) receptor (EGFR) C-terminal domain in EGFR internalization are done in the context of EGFR kinase activation. We recently showed that EGF-induced EGFR internalization is directly controlled by receptor dimerization, rather than kinase activation. Here we studied the role of EGFR C-terminus in EGF-induced EGFR internalization with or without EGFR kinase activation. We showed that graduate truncation of EGFR from C-terminus to 1044 did not affect EGF-induced EGFR endocytosis with or without kinase activation. However, truncation to 991 or further completely inhibited EGFR endocytosis. Graduate truncation within 991-1044 progressively lower EGF-induced EGFR endocytosis with most significant effects observed for residues 1005-1017. The endocytosis patterns of mutant EGFRs are independent of EGFR kinase activation. The residues 1005-1017 were also required for EGFR internalization triggered by non-ligand-induced receptor dimerization. This indicates that residues 1005-1017 function as an internalization motif, rather than a dimerization motif, to mediate EGFR internalization. Furthermore, we showed that the di-leucine motif 1010LL1011 within this region is essential in mediating EGF-induced rapid EGFR internalization independent of kinase activation. We conclude that EGFR C-terminal sequences 1005-1017 and the 1010LL1011 motif are essential for EGF-induced EGFR endoytosis independent of EGFR kinase activation and autophosphorylation.  相似文献   

3.
The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ~40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.  相似文献   

4.
Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40-60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and mu-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of "endocytic evasion," modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors.  相似文献   

5.
Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between (835)Ala and (918)Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events.  相似文献   

6.
Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions.  相似文献   

7.
The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies.  相似文献   

8.
Crystallographic studies have offered understanding of how receptor tyrosine kinases from the ErbB family are regulated by their growth factor ligands. A conformational change of the EGFR (ErbB1) was shown to occur upon ligand binding, where a solely ligand-mediated mode of dimerization/activation was documented. However, this dogma of dimerization/activation was revolutionized by the discovery of constitutively active ligand-independent EGFR mutants. In addition, other ligand-independent activation mechanisms may occur. We have shown that oxidative stress (ox-stress), induced by hydrogen peroxide or cigarette smoke, activates EGFR differently than its ligand, EGF, thereby inducing aberrant phosphorylation and impaired trafficking and degradation of EGFR. Here we demonstrate that ox-stress activation of EGFR is ligand-independent, does not induce "classical" receptor dimerization and is not inhibited by the tyrosine kinase inhibitor AG1478. Thus, an unprecedented, apparently activated, state is found for EGFR under ox-stress. Furthermore, this activation mechanism is temperature-dependent, suggesting the simultaneous involvement of membrane structure. We propose that ceramide increase under ox-stress disrupts cholesterol-enriched rafts leading to EGFR re-localization into the rigid, ceramide-enriched rafts. This increase in ceramide also supports EGFR aberrant trafficking to a peri-nuclear region. Therefore, the EGFR unprecedented and activated conformation could be sustained by simultaneous alterations in membrane structure under ox-stress.  相似文献   

9.
Asymmetric dimer formation of epidermal growth factor receptor (EGFR) is crucial for EGF-induced receptor activation. Even though autophosphorylation is important for activation, its role remains elusive in the context of regulating dimers. In this study, employing overlapping time series analysis to raster image correlation spectroscopy (RICS), we observed time-dependent transient dynamics of EGFR dimerization and found EGFR kinase activity to be essential for dimerization. As a result of which, we hypothesized that phosphorylation could influence dimerization. Evaluating this point, we observed that one of the tyrosine residues (Y954) located in the C-terminal lobe of the activator kinase domain was important to potentiate dimerization. Functional imaging to monitor Ca2+ and ERK signals revealed a significant role of Y954 in influencing downstream signaling cascade. Crucial for stabilization of EGFR asymmetric dimer is a “latch” formed between kinase domains of the binding partners. Because Y954 is positioned adjacent to the latch binding region on the kinase domain, we propose that phosphorylation strengthened the latch interaction. On the contrary, we identified that threonine phosphorylation (T669) in the latch domain negatively regulated EGFR dimerization and the downstream signals. Overall, we have delineated the previously anonymous role of phosphorylation at the latch interface of kinase domains in regulating EGFR dimerization.  相似文献   

10.
To investigate the function of dimerization of the TRH receptor, a controlled dimerization system was developed. A variant FK506 binding protein (FKBP) domain was fused to the receptor C terminus and dimerization induced by incubating cells with dimeric FKBP ligand, AP20187. The TRH receptor-fusion bound hormone and signaled normally. Addition of dimerizer to cells expressing the receptor-FKBP fusion dramatically increased the fraction of receptor running as dimer on SDS-PAGE. AP20187 caused dimerization in a time- and concentration-dependent manner, acting within 1 min. Dimerizer had no effect on TRH receptors lacking the FKBP domain, and its effects were blocked by excess monomeric FKBP ligand. AP20187-induced dimerization did not cause receptor phosphorylation, inositol phosphate production, or ERK1/2 activation, and dimerizer did not alter signaling by TRH. Induced dimerization did, however, alter TRH receptor trafficking. TRH promoted greater receptor internalization in cells treated with AP20187 but not monomeric ligand, based on loss of surface binding sites and immunostaining. Dimerization increased the rate of internalization of TRH receptors and decreased the apparent rate of receptor recycling. AP20187 enhanced the small amount of TRH-induced receptor internalization when the receptor-FKBP fusion protein was expressed in cells lacking beta-arrestins. The results show that controlled dimerization of the TRH receptor potentiates hormone-induced receptor trafficking.  相似文献   

11.
12.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

13.
Recent crystallographic data on the isolated extracellular domain of the epidermal growth factor receptor (EGFR) have suggested a model for its activation by ligand. We have tested this model in the context of the full-length EGFR displayed at the cell surface, by introducing mutations in two regions (CR1 and CR2) of the extracellular domain thought to be critical for regulation of receptor activation. Mutations in the CR1 and CR2 domains have opposing effects on ligand binding affinity, receptor dimerization, tyrosine kinase activation, and signaling competence. Tyr(246) is a critical residue in the CR1 loop, which is implicated in the positioning and stabilization of the receptor dimer interface after ligand binding; mutations of Tyr(246) impair or abolish receptor function. Mutations in CR2, which weaken the interaction that restricts the receptor to the tethered (inactive) state, enhance responsiveness to EGF by increasing affinity for the ligand. However, weakening of the CR1/CR2 interaction does not result in spontaneous activation of the receptors' kinase. We have used an antibody (mAb 806), which recognizes a transition state of the EGF receptor between the negatively constrained, tethered state and the fully active back-to-back dimer conformation, to follow conformational changes in the wild-type and mutant EGF receptors after ligand binding. Our results suggest that EGFR on the cell surface can be untethered, but this form is inactive; thus, untethering of the receptor is not sufficient for activation, and ligand binding is essential for the correct positioning of the two receptor subunits to achieve kinase activation.  相似文献   

14.
The epidermal growth factor receptor (EGFR) is a multisited and multifunctional transmembrane glycoprotein with intrinsic tyrosine kinase activity. Upon ligand binding, the monomeric receptor undergoes dimerization resulting in kinase activation. The consequences of kinase stimulation are the phosphorylation of its own tyrosine residues (autophosphorylation) followed by association with and activation of signal transducers. Deregulation of signaling resulting from aberrant expression of the EGFR has been implicated in a number of neoplasms including breast, brain, and skin tumors. A mutant epidermal growth factor (EGF) receptor missing 267 amino acids from the exoplasmic domain is common in human glioblastomas. The truncated receptor (EGFRvIII/DeltaEGFR) lacks EGF binding activity; however, the kinase is constitutively active, and cells expressing the receptor are tumorigenic. Our studies revealed that the high kinase activity of the DeltaEGFR is due to self-dimerization, and contrary to earlier reports, the kinase activity per molecule of the dimeric DeltaEGFR is comparable to that of the EGF-stimulated wild-type receptor. Furthermore, the phosphorylation patterns of both receptors are similar as determined by interaction with a conformation-specific antibody and by phosphopeptide analysis. This eliminates the possibility that the defective down-regulation of the DeltaEGFR is due to its altered phosphorylation pattern as has been suggested previously. Interestingly, the receptor-receptor self-association is highly dependent on a conformation induced by N-linked glycosylation. We have identified four potential sites that might participate in self-dimerization; these sites are located in a domain that plays an important role in EGFR functioning.  相似文献   

15.
Several inhibitors of epidermal growth factor receptor (EGFR) kinase and Src family kinases (SFK) were employed to study the role of these kinases in EGFR internalization through clathrin-coated pits. The EGFR kinase-specific compound PD158780 substantially diminished EGFR internalization. PP2, an inhibitor of SFK, had a moderate effect on EGFR internalization in several types of cells, including cells lacking SFK, indicating that the inhibition of endocytosis by PP2 is mediated by kinases other than SFK. In contrast, SU6656, a more specific inhibitor of SFK, did not affect EGFR internalization. To examine what stage of internalization requires receptor kinase activity, we established a quantitative assay based on three-dimensional fluorescence microscopy that measures co-localization of an EGF-rhodamine conjugate and a fluorescently tagged clathrin adaptor protein complex, AP-2. Interestingly, recruitment of EGFR into coated pits did not require physiological temperature because the maximal accumulation of EGFR in coated pits was observed at 4 degrees C. Pretreatment of the cells with PD158780 prevented EGFR recruitment into coated pits, whereas the inhibitor did not block the internalization of receptors that had first been allowed to enter the coated pits at 4 degrees C. These data demonstrate that the activation of receptor kinase is essential for the initial, coated pit recruitment step of endocytosis.  相似文献   

16.
The receptor for epidermal growth factor (EGF) plays an important role in epidermal keratinocytes and is known to move out of lipid raft after cholesterol depletion, leading to ligand-independent activation. Accumulation of evidence indicates the ability of EGF receptor (EGFR) to undergo internalization without participation of the ligand under the control of p38 MAPK during stress conditions. Since cholesterol depletion using methyl-beta-cyclodextrin is known to induce ligand-independent activation of EGFR in keratinocytes, we investigated by confocal microscopy and ligand-binding tests the processing and localization of EGFR following lipid raft disruption. Here, we report the dimerization and the slow internalization of the receptor accompanied by the delayed phosphorylation of tyrosine 1068 and its degradation by the proteasome. We also demonstrate the involvement of p38 MAPK during the process of internalization, which can be considered as a protective response to stress. Moreover, cholesterol-depleted keratinocytes recover their ability to proliferate during the recovery period that follows lipid raft disruption.  相似文献   

17.
Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.  相似文献   

18.
二聚化:受体酪氨酸激酶活化的重要机制   总被引:1,自引:0,他引:1  
受体酪氨酸激酶家族是一类具有内源性蛋白酪氨酸激酶活性的生长因子受体。它们具有相似的分子结构 ,其配体介导的受体活化主要是通过二聚化的机制来实现的。配体介导同源或异源的受体二聚化 ,不同的配体以不同的机制介导受体的二聚化。本文介绍了受体酪氨酸激酶家族不同亚类受体在其配体介导下二聚化的机制 ,并着重介绍了表皮生长因子受体家族各成员间的异二聚化及其引起的胞内信号转导途径的多样化  相似文献   

19.
Serine proteases are now considered as crucial contributors to the development of human colon cancer. We have shown recently that thrombin is a potent growth factor for colon cancer cells through activation of the aberrantly expressed protease-activated receptor 1 (PAR1). Here, we analyzed the signaling pathways downstream of PAR1 activation, which lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events on activation of PAR1 by thrombin or specific activating peptide: (a) a matrix metalloproteinase-dependent release of transforming growth factor-alpha (TGF-alpha) as shown with TGF-alpha blocking antibodies and measurement of TGF-alpha in culture medium; (b) TGF-alpha-mediated activation of epidermal growth factor receptor (EGFR) and subsequent EGFR phosphorylation; and (c) activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and subsequent cell proliferation. The links between these events are shown by the fact that stimulation of cell proliferation and ERK1/2 on activation of PAR1 is reversed by the MMP inhibitor batimastat, TGF-alpha neutralizing antibodies, EGFR ligand binding domain blocking antibodies, and the EGFR tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGFR seems to be a major mechanism whereby activation of PAR1 results in colon cancer cell growth. Finally, PAR1 activation induces Src phosphorylation, which is reversed by using the Src tyrosine kinase inhibitor PP2, suggesting that Src activation plays a permissive role for PAR1-mediated ERK1/2 activation and cell proliferation probably acting downstream of the EGFR. These data explain how thrombin exerts robust trophic action on colon cancer cells and underline the critical role of EGFR transactivation.  相似文献   

20.
Signaling by the Epidermal Growth Factor Receptor (EGFR) and related ErbB family receptor tyrosine kinases can be deregulated in human malignancies as the result of mutations in the genes that encode these receptors. The recent identification of EGFR mutations that correlate with sensitivity and resistance to EGFR tyrosine kinase inhibitors in lung and colon tumors has renewed interest in such activating mutations. Here we review current models for ligand stimulation of receptor dimerization and for activation of receptor signaling by receptor dimerization. In the context of these models, we discuss ErbB receptor mutations that affect ligand binding and those that cause constitutive receptor phosphorylation and signaling as a result of constitutive receptor dimerization. We discuss mutations in the cytoplasmic regions that affect enzymatic activity, substrate specificity and coupling to effectors and downstream signaling pathways. Finally, we discuss how emergent mechanisms of ErbB receptor mutational activation could impact the search for clinically relevant ErbB receptor mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号