首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
远缘杂交不需幼胚培养的节节麦基因型   总被引:9,自引:0,他引:9  
六倍体普通小麦(Triticum aestivum L.)是由四倍体小麦(T.turgidum L.)与二倍体节节麦(Aegilops tanschii Coss.)天然杂交然后通过染色体自然加倍形成的异源多倍体。这一起源过程是自然条件下天然发生的,它的发生需要具备一个条件:四倍体小麦与节节麦的天然杂交种子在自然条件(没有幼胚培养等)下能够正常发芽出苗。我们从22份节节麦中发现来自中东的节节麦AS60在不采用幼胚培养等人工辅助条件下,仍然很容易与四体小麦和普通小麦产生有生活力的杂种植株。AS60与四倍体小麦的杂交种子有50.0%(反交)及57.1%(正交)的种子,而AS60与六倍体普通小麦的杂交种子则有45.5%不需幼胚培养等措施能够正常发芽,生长。AS60的这一特征正是普通小麦起源过程需要的条件。最后探讨了这一发现对小麦遗传改良和对普通小麦起源演化研究的意义。  相似文献   

2.
节节麦×普通小麦杂种的胚援救和胚愈伤组织再生植株   总被引:2,自引:0,他引:2  
通过活体-离体胚培养和胚愈伤组织培养有效地克服了节节麦(Aegilops tauschii Cosson.)×小麦(Triticum aestivum L.)杂种幼胚的败育,产生了大量的杂种植株。采用活体-离体胚培技术,节节麦×小麦三个组合杂种幼胚的成苗率为55%,是前人所用传统胚培方法成功率的5—20倍。杂种幼胚在添加有2 mg/L 2,4-D的MS培养基上诱导为愈伤组织,经继代产生全能性愈伤组织,继而分化出再生植株。愈伤组织经继代保存150天仍不丧失分化能力。本文还对两种产生杂种的组织培养方法进行了比较研究。  相似文献   

3.
利用活体-离体胚培养和胚愈伤组织诱导、再生植株技术有效地克服了节节麦远缘杂种胚的败育,高效产生了节节麦与硬粒小麦-簇毛麦双倍体、六倍体小黑麦、小麦、大麦间的杂种植株,从而为节节麦种质利用提供了技术方法。  相似文献   

4.
普通小麦是由四倍体小麦栽培类型与野生二倍体节节麦远缘杂交形成的异源六倍体.普通小麦保持了四倍体小麦的高产潜力,D基因组的加入丰富了食品加工产品类型、增强了环境适应能力.与二倍体作物不同,普通小麦有3个亚基因组,存在大量重复基因,基因组缓冲性、可塑性强,单个基因拷贝可能对育种改良的效果有限.小麦3个亚基因组的遗传多样性是...  相似文献   

5.
丁春邦  周永红   《广西植物》1999,19(2):143-145
用石蜡切片法,对小麦经节节麦花粉授粉后不同时间固定的子房进行了细胞胚胎学观察。结果表明,节节麦花粉在小麦柱头上萌发良好,花粉管可顺利长入花柱和胚囊。观察的238个小麦子房中,1050%发生了双受精,产生了胚和胚乳;462%发生了单卵受精,只产生胚而无胚乳;378%发生了单极核受精,只产生胚乳而无胚;总受精率为1890%;成胚率为1512%。本文还报道了小麦与节节麦远缘杂交时雌雄性核的结合及杂种胚和胚乳的发育情况,探讨了小麦与节节麦杂交结实率低在胚胎学方面的原因  相似文献   

6.
根癌农杆菌介导小麦幼胚遗传转化的影响因素   总被引:18,自引:0,他引:18  
利用携带pC3301质粒(含bar和gus基因)的超毒根癌农杆菌菌株EHA105对普通小麦(Triticum aestivum L.)扬麦158进行了遗传转化,对筛选中的抗生素浓度、菌液浓度、共培养温度和时间、幼胚预培养时间、乙酰丁香酮(AS)浓度、洗涤用液及筛选方式等影响转化的几个重要因素进行了讨论.对从294个小麦幼胚外植体中转化得到的5株成活植株进行了PCR和Southern blot分析,结果表明其中2株小麦基因组中整合了外源DNA,转化频率为0.68%.  相似文献   

7.
小麦穗发芽是小麦生产中的主要灾害和重要问题,在普通小麦中缺乏抗穗发芽的品种资源。本试验通过对35份黄河中游地区节节麦、14份国外节节麦及部分小麦品种的发芽率的测定及抗性多样性分析,综合评价了黄河中游地区节节麦的穗发芽抗性状况。结果表明,节节麦穗发芽抗性普遍高于小麦品种,黄河中游地区节节麦的抗穗发芽能力优于国外材料,其中以T005、T007、T008、T016、T030、T062、T065、T068、T069、T072和T085等11个材料的抗穗发芽能力最强,是小麦穗发芽改良优异的抗源材料。  相似文献   

8.
远缘杂交早代稳定小麦导入了外源DNA片段并发生了DNA重排   总被引:2,自引:0,他引:2  
在植物界, 多倍体植物非常普遍. 具有A, B, D三个部分同源染色体组的普通小麦是异源多倍体物种的一个典型代表. 近几年, 模拟普通小麦的起源过程进行的研究表明, 从四倍体小麦注入节节麦整个基因组形成异源六倍体小麦的早期阶段, DNA序列和基因表达发生了可能有利于遗传“二倍化”的变化. 利用普通小麦-黑麦远缘杂交自然结实的早代稳定特异小麦99L2研究发现: (ⅰ) 99L2至少导入了两个黑麦染色体上的DNA片段, 表明可能存在不同于传统的小麦-外源染色体配对重组的外源DNA导入机制; (ⅱ) 99L2自身的DNA序列发生了变化, 表明外源DNA部分片段注入小麦染色体组过程中, 也可能导致小麦自身DNA序列发生变化.  相似文献   

9.
在异源多倍体形成的早期, DNA序列和基因的表达迅速发生了改变. 以异源六倍体小麦为例, 比较了四倍体小麦与节节麦合成六倍体小麦前后, 位于普通小麦D染色体组不同染色体臂上的特异性引物揭示的微卫星位点变化特点. 结果表明, 从四倍体小麦与节节麦杂交, 将A, B与D染色体组结合在一起并加倍得到AABBDD的六倍体小麦这一“剧烈事件”中: (ⅰ) 微卫星的侧翼序列发生了变化, 导致出现了供体物种没有的新带纹或供体物种的带纹消失, 其中, 供体物种的带纹消失是主要的. (ⅱ) 供体物种的带纹消失不是随机的, 而是四倍体小麦消失频率远高于节节麦的频率, 即发生在A, B染色体组的消失频率比发生在D染色体组的频率高得多. (ⅲ) 微卫星侧翼序列的变化在多倍化的早期(F1代或S1代)就开始发生. 由此看来, 微卫星两边的侧翼区域在多倍化过程中很活跃, 是容易发生变化的区域. 微卫星的生物学功能可能与多倍体进化过程有关, 微卫星两边的侧翼区域在多倍化过程的早期迅速发生有方向性的改变可能有利于新形成异源多倍体的迅速进化, 从而使不同染色体组在遗传上迅速达到协调.  相似文献   

10.
节节麦与小麦、黑麦或小黑麦的杂种幼胚的离体培养   总被引:5,自引:0,他引:5  
以山羊草属节节麦作母本,普通小麦、二粒系小麦、黑麦及小黑麦分别作父本杂交,将授粉后不同天数的幼胚取下,在无菌条件下接种于试管内培养。共接种101个杂交组合的1090个幼胚,分化成全苗的31个(2.84%),无根小苗20个(1.83%),类苗24个(2.2%)、愈伤组织66块(6.05%)未分化的950个(87.16%)。在31个全苗中包括普通小麦的21株、二粒系小麦的5株、黑麦的2株、小黑麦的3株。试验说明,用二倍体节节麦作母本,借助于幼胚培养,也可以获得远缘杂种。  相似文献   

11.
Sequence polymorphism in polyploid wheat and their d-genome diploid ancestor   总被引:12,自引:0,他引:12  
Sequencing was used to investigate the origin of the D genome of the allopolyploid species Triticum aestivum and Aegilops cylindrica. A 247-bp region of the wheat D-genome Xwye838 locus, encoding ADP-glucopyrophosphorylase, and a 326-bp region of the wheat D-genome Gss locus, encoding granule-bound starch synthase, were sequenced in a total 564 lines of hexaploid wheat (T. aestivum, genome AABBDD) involving all its subspecies and 203 lines of Aegilops tauschii, the diploid source of the wheat D genome. In Ae. tauschii, two SNP variants were detected at the Xwye838 locus and 11 haplotypes at the Gss locus. Two haplotypes with contrasting frequencies were found at each locus in wheat. Both wheat Xwye838 variants, but only one of the Gss haplotypes seen in wheat, were found among the Ae. tauschii lines. The other wheat Gss haplotype was not found in either Ae. tauschii or 70 lines of tetraploid Ae. cylindrica (genomes CCDD), which is known to hybridize with wheat. It is concluded that both T. aestivum and Ae. cylindrica originated recurrently, with at least two genetically distinct progenitors contributing to the formation of the D genome in both species.  相似文献   

12.
13.
小麦A/B染色体组SSR标记在新小麦合成前后的比较研究   总被引:1,自引:0,他引:1  
微卫星分子标记已广泛用于普通小麦遗传和进化研究。由于人工合成小麦与小麦品种之间存在高的遗传多样性,人工合成小麦已被大量应用于小麦分子标记工作中。但是,目前还缺乏人工合成小麦的异源六倍化过程对微卫星影响的研究。本研究直接比较了四倍体小麦与节节麦远缘杂交并经染色体加倍获得人工合成小麦前后,位于普通小麦A/B染色体组不同染色体臂上的66个特异引物揭示的微卫星位点的保守性和可转移性。结果表明,除了一个引物在新合成小麦中扩增出供体亲本没有的新带,一个引物在节节麦扩增出的产物在新合成小麦中消失,其他的所有微卫星引物的扩增产物在小麦合成前后是保守的,没有变异发生。所有的引物能够在四倍体小麦中扩增出微卫星产物,四倍体小麦中的扩增产物也出现在新的人工合成小麦中;有70%的引物能够在节节麦扩增出产物,其中的绝大多数产物也出现在新的人工合成小麦中。因此,普通小麦A/B染色体组的这些微卫星引物除了在人工合成小麦的A/B染色体组中扩增出产物,还能在其D染色体组中扩增出产物,也就是说,这些引物对人工合成小麦而言,并非是A/B染色体组特异的。根据该研究结果,讨论了小麦微卫星的可转移性和特异性问题,重点讨论了在应用人工合成小麦构建的遗传群体进行微卫星分子标记中的应用价值及其应该注意的问题。  相似文献   

14.
Morphologcal and cytological studies of hybrids between hexaploid Aegilops crassa Boiss. (2n = 6x = 42, DDD2 D2Mcr Mcr), Ae. vavilovii (Zhuk.) Chen. (2n = 6x = 42, DDMcr McrSp Sp) and Triticum aestivum L. (2n= 6x = 42, AABBDD) were carried out. The results showed that most of the F1 hybrids morphologically resembled their Aegilops parental species. Four Fl hybrids of Ae. vavilovii × T. aestivum and one of Ae. crassa × T. aestivum produced seeds containing few endosperms. The percentage of seed obtained ranged from 0.1% to 6.5 %. These seeds were not vigorous and only a few of them germinated. A large number of univalents appeared at meiosis MI. The frequencies of bivalents were lower than those being theoriticaly estimated. These results indicated that the D genomes in Ae. Crassa and Ae. vavilovii may have been substantially modified. Trivalents were observed in all Fl hybrids. Quadrivalents and pentavalents were also observed in some PMCs during meiosis. The chiasmata frequencies in hybrids using Aegilops species as maternal parents were higher than those in their reciprocal ones. Chromosome segrigations were abnormal at A Ⅰ and A Ⅱ . Polyads and micronuclei appeared frequently at telophase tetrad stage. A plant with 21 chromosomes was obtained in Ae. vavilovii × Jimai 30, although the reason was not yet clear.  相似文献   

15.
Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49,45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of ID (1A), 1D (1B), 3D (3A), 4D (4B), 7D (TA), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in Fi hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F1 hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.  相似文献   

16.
The origin of spelt and free-threshing hexaploid wheat   总被引:1,自引:0,他引:1  
It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.  相似文献   

17.
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.  相似文献   

18.
Aegilops tauschii, the wild diploid D-genome progenitor of wheat, Triticum aestivum L., is an important source of resistance to several arthropod pests and pathogens. A total of 108 Ae. tauschii accessions from different geographic regions were evaluated for resistance to biotypes of the wheat curl mite, Aceria tosichella Keifer, from Kansas, Nebraska, and Montana. The wheat curl mite is the only vector known to transmit wheat streak mosaic virus. Wheat curl mite resistance was detected in germplasm from all the geographic locations represented. The highest percentage of resistant accessions originated from Turkey, followed by Afghanistan and the Caspian Sea region of Iran. Sixty-seven percent of the accessions exhibited resistance to at least one wheat curl mite biotype and 19% were resistant to all the three biotyopes. Resistance to the accessions tested occurred more frequently in the Nebraska and Kansas biotypes (69% and 64%, respectively) than did resistance to the Montana biotype (42%), although the frequency of resistance was not significant. The differential reactions of accessions to the different wheat curl mite biotypes suggests that Ae. tauschii has at least five different genes for resistance to mite colonization. Ae. tauschii continues to be a very useful source for wheat curl mite resistance genes for bread wheat improvement.  相似文献   

19.
Imtiaz M  Ogbonnaya FC  Oman J  van Ginkel M 《Genetics》2008,178(3):1725-1736
Aegilops tauschii, the wild relative of wheat, has stronger seed dormancy, a major component of preharvest sprouting resistance (PHSR), than bread wheat. A diploid Ae. tauschii accession (AUS18836) and a tetraploid (Triticum turgidum L. ssp. durum var. Altar84) wheat were used to construct a synthetic wheat (Syn37). The genetic architecture of PHS was investigated in 271 BC(1)F(7) synthetic backcross lines (SBLs) derived from Syn37/2*Janz (resistant/susceptible). The SBLs were evaluated in three environments over 2 years and PHS was assessed by way of three measures: the germination index (GI), which measures grain dormancy, the whole spike assay (SI), which takes into account all spike morphology, and counted visually sprouted seeds out of 200 (VI). Grain color was measured using both Chroma Meter- and NaOH-based approaches. QTL for PHSR and grain color were mapped and their additive and epistatic effects as well as their interactions with environment were estimated by a mixed linear-model approach. Single-locus analysis following composite interval mapping revealed four QTL for GI, two QTL for SI, and four QTL for VI on chromosomes 3DL and 4AL. The locus QPhs.dpiv-3D.1 on chromosome 3DL was tightly linked to the red grain color (RGC) at a distance of 5 cM. The other locus on chromosome 3D, "QPhs.dpiv-3D.2" was independent of RGC locus. Two-locus analysis detected nine QTL with main effects and 18 additive x additive interactions for GI, SI, and VI. Two of the nine main effects QTL and two epistatic QTL showed significant interactions with environments. Both additive and epistatic effects contributed to phenotypic variance in PHSR and the identified markers are potential candidates for marker-assisted selection of favorable alleles at multiple loci. SBLs derived from Ae. tauschii proved to be a promising tool to dissect, introgress, and pyramid different PHSR genes into adapted wheat genetic backgrounds. The enhanced expression of PHS resistance in SBLs enabled us to develop white PHS-resistant wheat germplasm from the red-grained Ae. tauschii accession.  相似文献   

20.
Using three diploid (Triticum monococcum, AA), three tetraploid (Triticum turgidum, BBAA), two hexaploid (Triticum aestivum and Triticum compactum, BBAADD) wheats and two Aegilops tauschii (DD) genotypes, experiments were carried out under controlled environmental conditions in nutrient solution (i) to study the relationships between the rates of phytosiderophore (PS) release from the roots and the tolerance of diploid, tetraploid, and hexaploid wheats and AE: tauschii to zinc (Zn) and iron (Fe) deficiencies, and (ii) to assess the role of different genomes in PS release from roots under different regimes of Zn and Fe supply. Phytosiderophores released from roots were determined both by measurement of Cu mobilized from a Cu-loaded resin and identification by using HPLC analysis. Compared to tetraploid wheats, diploid and hexaploid wheats were less affected by Zn deficiency as judged from the severity of leaf symptoms. Aegilops tauschii showed very slight Zn deficiency symptoms possibly due to its slower growth rate. Under Fe-deficient conditions, all wheat genotypes used were similarly chlorotic; however, development of chlorosis was first observed in tetraploid wheats. Correlation between PS release rate determined by Cu-mobilization test and HPLC analysis was highly significant. According to HPLC analysis, all genotypes of Triticum and AE: tauschii species released only one PS, 2'-deoxymugineic acid, both under Fe and Zn deficiency. Under Zn deficiency, rates of PS release in tetraploid wheats averaged 1 micromol x (30 plants)(-1) x (3 h)(-1), while in hexaploid wheats rate of PS release was around 14 micromol x (30 plants)(-1) x (3 h)(-1). Diploid wheats and AE: tauschii accessions behaved similarly in their capacity to release PS and intermediate between tetraploid and hexaploid wheats regarding the PS release capacity. All Triticum and Aegilops species released more PS under Fe than Zn deficiency, particularly when the rate of PS release was expressed per unit dry weight of roots. On average, the rates of PS release under Fe deficiency were 3.0, 5.7, 8.4, and 16 micromol x (30 plants)(-1) x (3 h)(-1) for AE: tauschii, diploid, tetraploid and hexaploid wheats, respectively. The results of the present study show that the PS release mechanism in wheat is expressed effectively when three genomes, A, B and D, come together, indicating complementary action of the corresponding genes from A, B and D genomes to activate biosynthesis and release of PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号