首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Segregation distortion genes are widespread in plants and animals and function by their effect on competition among gametes for preferential fertilization. In this study, we evaluated the segregation distortion of molecular markers in multiple reciprocal backcross populations derived from unique cytogenetic stocks involving the durum cultivar Langdon (LDN) and wild emmer accessions that allowed us to study the effects of chromosome 5B in isolation. No segregation distortion of female gametes was observed, but three populations developed to analyze segregation of male gametes had genomic regions containing markers with skewed segregation ratios. One region of distortion was due to preferential transmission of LDN alleles over wild emmer alleles through male gametes. Another region required the presence of LDN 5B chromosomes in the female for preferential fertilization by male gametes harboring LDN alleles indicating that the corresponding genes in the female gametes can govern genes affecting segregation distortion of male gametes. A third region of distortion was the result of preferential transmission of wild emmer alleles over LDN alleles through male gametes. These results indicate the existence of different distorter/meiotic drive elements among different genotypes and show that distortion factors along wheat chromosome 5B differ in chromosomal location as well as underlying mechanisms.  相似文献   

2.
L Zhang  J Luo  M Hao  L Zhang  Z Yuan  Z Yan  Y Liu  B Zhang  B Liu  C Liu  H Zhang  Y Zheng  D Liu 《BMC genetics》2012,13(1):69-8
ABSTRACT: BACKGROUND: A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. RESULTS: Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. CONCLUSIONS: A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.  相似文献   

3.
S S Maan 《Génome》1994,37(2):210-216
Two nuclear genes, vitality (Vi) on an A- or B-genome chromosome and species cytoplasm specific (scs) on a 1DL telosome from Triticum aestivum L. or a telosome from Aegilops uniaristata Vis. (un telosome), improved compatibility between the nucleus of Triticum turgidum L. var. durum and the cytoplasm of Ae. longissima S. &M. or Ae. uniaristata. To study interactions between Vi and scs and to determine the chromosomal location of Vi, 29-chromosome fertile plants were crossed with 13 D-genome disomic-substitution (d-sub) lines [except 5D(5A)] of 'Langdon' durum. F1 and backcross progenies were examined for meiotic chromosome number and pairing, fertility, and plant vigor. In 11 crosses, Vi restored seed viability but produced double-monosomics (d-monos) with greatly reduced growth and vigor. In contrast, crosses involving 1D(1A) and 1D(1B) d-sub lines produced d-monos with normal vigor and anthesis but nonfunctional pollen. A backcross of 1D + 1A d-mono F1 and 1D(1A) d-sub lines produced 11 male steriles; 3 had 13 II + 1 II 1D + 1 I 1A, 2 had 13 II + 2 I, 1 had 13 II + 1 II 1D(1A), and 5 were not examined. Crosses of 1D + 1A d-mono F1 with control durum, lo durum (with 1DL), and un durum (with un telosome) lines produced 16 male-sterile d-monos and 14 fertiles with 14 II + 1 I 1D, showing that 15-chromosome female gametes transmitted monosomes 1A and 1D. However, BC2F1's from 1D + 1B d-mono x fertile line with un telosome included 20 male-sterile d-monos, 6 fertile triple monosomics (13 II + 1 I 1D + 1 I 1B + t I un telosome), and 1 fertile plant with a 1B/1D translocation. Unlike d-mono 1A + 1D, d-mono 1B + 1D did not transmit 15-chromosome female gametes with monosomes 1D and 1B. Additional backcrosses also indicated that homozygous scs caused male sterility in 1D(1A) and 1D(1B) d-subs and that the procedure used was not suitable for the chromosomal location of Vi.  相似文献   

4.
S J Xu  L R Joppa 《Génome》1995,38(3):607-615
First division restitution (FDR) in intergeneric Triticeae hybrids provides an important meiotic mechanism for the production of amphidiploids without the use of colchicine and similar chemicals. The genetic controls of FDR were investigated by examining microsporogenesis and fertility in F1 hybrids of two- and three-way crosses of durum wheat (Triticum turgidum L. var. durum) cultivars Langdon (LDN) and Golden Ball (GB), 'Gazelle' rye (Secale cereale L.), and one accession (RL5286) of Aegilops squarrosa L. The results from two-way crosses indicated that the first meiotic division varied, depending on the hybrid. GB crossed with Ae. squarrosa developed tripolar spindles and prevented congregation of chromosomes at the equatorial plate. The hybrid of GB with rye had a delayed first division. But, the hybrids of LDN with both Ae. squarrosa and rye had a high frequency of FDR. Analysis from the three-way crosses indicated that inheritance in rye crosses differed from those with Ae. squarrosa. FDR segregated in a 1:1 ratio in the rye cross, suggesting that the FDR is controlled by a single gene from LDN. However, FDR fit a 1:3 ratio in the three-way crosses with Ae. squarrosa. Cytological data suggested that tripolar spindles are a major factor preventing FDR in Ae. squarrosa crosses. Some progenies from the three-way cross with rye had a high frequency of monads that resulted from second division failure of FDR cells.  相似文献   

5.
Hybrid (oat×maize) zygotes developed into euhaploid plants with complete oat chromosome complements without maize chromosomes and into aneuhaploid plants with complete oat chromosome complements and different numbers of retained individual maize chromosomes. The elimination of maize chromosomes in the hybrid embryo is caused by uniparental genome loss during early steps of embryogenesis. Some of these haploid plants set seed in up to 50% of their self-pollinated spikelets. The high fertility was found to be mainly caused by formation of numerically unreduced female and male gametes (nunreduced=3x+0…3=21…24 chromosomes). Gamete formation involves meiotic nuclear restitution. The restitution process is caused by an alternative type of meiosis. It follows the model of levigatum-type semi-heterotypic divisions, but with a formation of the nuclear membrane at the transition from telophase I to interkinesis, which resembles the model of pygaera-type pseudo-homotypic divisions. We propose the name haploid meiotic restitution for this particular process combination. We discuss the use and implications of the specific process of gamete formation in F1 (oat×maize) plants.  相似文献   

6.
Hexaploid bread wheat was derived from a hybrid cross between a cultivated form of tetraploid Triticum wheat (female progenitor) and a wild diploid species, Aegilops tauschii Coss. (male progenitor). This cross produced a fertile triploid F1 hybrid that set hexaploid seeds. The identity of the female progenitor is unknown, but various cultivated tetraploid Triticum wheats exist today. Genetic and archaeological evidence suggests that durum wheat (T. turgidum ssp. durum) may be the female progenitor. In previous studies, however, F1 hybrids of durum wheat crossed with Ae. tauschii consistently had low levels of fertility. To establish an empirical basis for the theory of durum wheat being the female progenitor of bread wheat, we crossed a durum wheat cultivar that carries a gene for meiotic restitution with a line of Ae. tauschii. F1 hybrids were produced without using embryo rescue techniques. These triploid F1 hybrids were highly fertile and spontaneously set hexaploid F2 seeds at the average selfed seedset rate of 51.5%. To the best of our knowledge, this is the first example of the production of highly fertile F1 hybrids between durum wheat and Ae. tauschii. The F1 and F2 hybrids are both similar morphologically to bread wheat and have vigorous growth habits. Cytological analyses of F1 male gametogenesis showed that meiotic restitution is responsible for the high fertility of the triploid F1 hybrids. The implications of these findings for the origin of bread wheat are discussed.  相似文献   

7.
The durum wheat cultivar ‘Golden Ball’ (GB) is a source of resistance to wheat sawfly due to its superior solid stem. In the late 1980s, Dr. Leonard Joppa developed a complete set of 14 ‘Langdon’ (LDN)–GB disomic substitution (DS) lines by using GB as the chromosome donor and LDN as the recipient. However, these substitution lines have not been previously characterized and reported in the literature. The objectives of this study were to confirm the authenticity of the substituted chromosomes and to analyze the genetic background of the 14 LDN–GB DS lines with the aid of molecular markers, and to further use the substitution lines for chromosomal localization of DNA markers and genes conferring the superior stem solidness in GB. Results from simple sequence repeat marker analysis validated the authenticity of the substituted chromosomes in 14 LDN–GB DS lines. Genome-wide scans using the target region amplification polymorphism (TRAP) marker system produced a total of 359 polymorphic fragments that were used to compare the genetic background of substitution lines with that of LDN. Among the polymorphic TRAP markers, 134 (37.3%) and 185 (51.5%) were present in LDN and GB, respectively, with only 10 (2.8%) derived from Chinese Spring. Therefore, marker analysis demonstrated that each LDN–GB DS line had a pair of chromosomes from GB with a genetic background similar to that of LDN. Of the TRAP markers generated in this study, 200 were successfully assigned to specific chromosomes based on their presence or absence in the corresponding LDN–GB DS lines. Also, evaluation of stem solidness in the substitution lines verified the presence of a major gene for stem solidness in chromosome 3B. Results from this research provides useful information for the utilization of GB and LDN–GB DS lines for genetic and genomic studies in tetraploid wheat and for the improvement of stem solidness in both durum and bread wheat.  相似文献   

8.
The objective of this study was to investigate the effect of individual durum wheat (Triticum turgidum L.) chromosomes on crossability with maize (Zea mays L.) and to cytologically characterize the haploids recovered. Fourteen 'Langdon' (LDN) D-genome disomic substitution lines, a LDN Ph mutant (Ph1b ph1b), and normal 'Langdon' were pollinated with maize pollen. After pollination, hormonal treatment was given daily for up to 14 days. Haploid embryos were obtained from all lines and were aseptically cultured. From a total of 55,358 pollinated florets, 895 embryos were obtained. Only 14 of the embryos germinated and developed into healthy plants. Different substitution lines showed varying degrees of success. The most successful was the substitution 5D(5B) for both embryo formation and haploid plantlet production. These results indicate that the substitution of 5D for 5B confers on durum wheat a greater ability to produce haploids. Fluorescent genomic in situ hybridization (GISH) showed that the substitution haploids consisted of 7 A-genome chromosomes, 6 B-genome chromosomes, and 1 D-genome chromosome. Triticum urartu Turn. genomic DNA was efficient in probing the 7 A-genome chromosomes, although the D-genome chromosome also showed intermediate hybridization. This shows a close affinity between the A genome and D genome. We also elucidated the evolutionary translocation involving the chromosomes 4A and 7B that occurred at the time of evolution of durum wheat. We found that the distal segment translocated from chromosome 7B constitutes about 24% of the long arm of 4A.  相似文献   

9.
In haploid and diploid organisms of the plant kingdom, meiotic division of diploid cells proceeds in two consecutive stages, with DNA replicating only once. In amphihaploids (interspecific or intergeneric hybrids), where homologs are absent, the reduction of the chromosome number does not occur, meiosis is abnormal, and the plants are sterile. Gamete viability in F1 hybrids is ensured by a single division when chromosomes are separated into sister chromatids in either the first or the second division. Such gametes ensure partial fertility of amphihaploids, thereby facilitating their survival and stabilization of the polygenome. The frequency of the formation of viable gametes varies from a few cases to 98.8% in different anthers of the hybrids. Here, studies on the cytological mechanisms and genetic control of chromosome unreduction or restitution in different amphihaploids of the tribe Triticeae are reviewed. The current notions on the control of formation of restitution nuclei based on the principles of a prolonged metaphase I and different types of meiocytes. The main terms used for systematization of restitution mechanisms are first-division restitution (FDR), single-division meiosis (SDM), and unreductional meiotic cell division (UMCD). It has been assumed that archesporial cells of wide hybrids may have two cell division programs, the meiotic and the mitoyic ones The possible approaches to the analysis of the genetic control of chromosome restitution in amphihaploids are discussed.  相似文献   

10.
Cytology and breeding behavior of Solanum commersonii - S. tuberosum hybrids derived from 3 x x 4 x crosses was examined. The chromosome number of hybrids ranged from hypo-pentaploid (2 n=5 x - 8=52), to hyper-pentaploid (2 n=5 x + 7=67), with the euploid pentaploid 2 n=5 x=60 class predominant. The high variability in chromosome number of the 3 x x 4 x hybrids was attributed to the fact that meiotic restitution during megasporogenesis of the 3 x female may have involved poles with various chromosome numbers, resulting in 2 n eggs with 24-48 chromosomes. Microsporogenesis analyses provided evidence that chromosome pairing between S. commersonii and S. tuberosum genomes occurred. In addition, chromosome distribution at anaphase I and anaphase II revealed an average chromosome number of 29.5 and 29.1 per pole, respectively. To further study the extent of transmission of extra genome chromosomes from pentaploids, 5 x x 4 x and 4 x x 5 x crosses were performed, and the chromosome number of resulting progeny was determined. Ploidy ranged from 2 n=4 x=48 to 2 n=5 x=60 following 5 x x 4 x crosses, and from 2 n=4 x + 1=49 to 2 n=5 x=60 following 4 x x 5 x crosses. These results provided indirect evidence that the pentaploid hybrids produced viable aneuploid gametes with a chromosome number ranging from 24 to 36. They also demonstrated that gametes with large numbers of extra chromosomes can be functional, resulting in sporophytes between the 4 x and 5 x ploidy level. Fertility parameters of crosses involving various (aneuploid) pentaploid genotypes were not influenced by chromosome number, suggesting a buffering effect of polyploidy on aneuploidy. The possibility of successfully using (aneuploid) pentaploid genotypes for further breeding efforts is discussed.  相似文献   

11.
Unreduced gametes play a fundamental role in speciation of flowering plants, asexual reproduction of plants, and restoration of fertility of distant hybrids used to produce new varieties with breeding-valuable traits. Unreduced gametes are formed as a result of meiotic restitution. To date, a large body of data has been accumulated on the types of meiotic restitution in dicots and monocots. However, there is no clear idea on the cytological mechanisms of this process. In this review, we systematize and analyze all currently known mechanisms of restitution in plants. New data on the mechanisms and genetic regulation of unreduced gamete formation in intergeneric wheat hybrids are presented.  相似文献   

12.
节节麦-簇毛麦属间杂种的形态学和细胞遗传学研究   总被引:3,自引:0,他引:3  
通过远缘杂交,结合杂种幼胚离体培养,获得了节节麦(Aegilops tauschii,2n=14,DD)和簇毛麦(Dasypyrum villosum,2n=14,VV)的属间杂种F1。对杂种F1花粉母细胞减数(PMC)分裂中期Ⅰ (MⅠ)染色体配对行为进行观察发现,“节节麦×簇毛麦”杂种F1平均每PMC有1.25个棒状二价体, 染色体的平均构型为2n=14=11.49Ⅰ+1.25Ⅱ (Xta=1.25), 大部分被观察的细胞出现1~5个二价体, 表明节节麦D染色体与簇毛麦V染色体间具有相对较高的部分同源配对, D和V染色体之间存在一定的部分同源性。F1植株高度自交不育,经染色体加倍处理后能够自交结实。Abstract: ‘Aegilops tauschii×Dasypyrum villosum’ F1 hybrids were obtained by the combination of hybridization and embryo culture in vitro. Chromosome pairing behavior in meiosis of the hybrid F1 was carried out. Results showed that in an average , 1.25 rod bivalents were observed in one PMC, meiotic configuration was 2n=14=11.49Ⅰ+1.25Ⅱ(Xta=1.25) and most of PMCs possessed 1~5(rod) bivalens, indicating that the relatively high homeology was detected between the D genome of Ae.tauschii and the V genome of D.villosum. The morphological differences between F1 hybrids and their parents were significant. F1 plants were highly self-sterile, but partially self-fertile after treated by chromosome doubling technique.  相似文献   

13.
Genomic in situ hybridization was used to study Triticum x Dasypyrum wide hybrids and derived lines. A cytogenetic investigation was carried out in progenies of (i) amphiploids derived from T. turgidum var. durum (T. durum; 2n = 14; genomes AABB) x D. villosum (2n = 14; genome VV), (ii) three-parental hybrids (T. durum x D. villosum) x T. aestivum (2n = 42, genomes A'A'B'B'D'D'), and (iii) T. aestivum aneuploid lines carrying D. villosum chromosomes or chromatin. The amphiploids derived from T. durum x D. villosum showed a stable chromosomal constitution, made up of 14 V chromosomes, 14 chromosomes carrying the wheat A genome and 14 chromosomes carrying the B genome. High karyological instability was observed in the progenies of three-parental hybrids ([T. durum x D. villosum] x T. aestivum). Plants having the expected 14 A chromosomes, 14 B chromosomes, 7 D chromosomes, and 7 V chromosomes were rather rare (4.5%). Many progeny plants (45.5%) had the hexaploid wheat genome with 42 chromosomes and lacked any detectable D. villosum chromatin. Other plants (50%) had 14 A chromosomes and 14 B chromosomes, plus variable numbers of D and V chromosomes, the former being better retained than the latter in most cases. Some T. aestivum lines carrying D. villosum chromosomes or chromatin, as the result of addition, substitution, or recombination events or even a combination of these karyological events, were found to be stable. Other lines were unstable, and these lines carried 1V, 3V, or 5V chromosomes or their portions. Substitution or recombination events where 1V chromosomes were involved could concern the homeologous counterparts in both the A and B and D genomes of wheat. No line could be recovered where the shorter arm of 3V chromosomes was present. Changes in the morphology and banding pattern of V chromosomes were observed in hybrids that did not carry the entire D. villosum complement. By comparing the results of our cytogenetic analyses with certain phenotypic characteristics of the lines studied, genes for discrete traits could be assigned to specific V chromosomes or V chromosome arms. From the frequency of V chromosomes that were involved in chromatin exchanges with or substituted for one of their homeologous counterparts in the A, B, and D wheat genomes, it was inferred that D. villosum belongs to the same phyletic lineage as T. urartu (donor of the A genome of wheat) and Aegilops speltoides (B genome), and that Ae. squarrosa (D genome) diverged earlier from D. villosum.  相似文献   

14.
The genetic structure of 2n gametes and, particularly, the parental heterozygosity restitution at each locus depends on the meiotic process by which they originated, with first-division restitution and second-division restitution (SDR) being the two major mechanisms. The origin of 2n gametes in citrus is still controversial, although sexual polyploidisation is widely used for triploid seedless cultivar development. In this study, we report the analysis of 2n gametes of mandarin cv 'Fortune' by genotyping 171 triploid hybrids with 35 simple sequence repeat markers. The microsatellite DNA allele counting-peak ratios method for allele-dosage evaluation proved highly efficient in segregating triploid progenies and allowed half-tetrad analysis (HTA) by inferring the 2n gamete allelic configuration. All 2n gametes arose from the female genitor. The observed maternal heterozygosity restitution varied between 10 and 82%, depending on the locus, thus SDR appears to be the mechanism underlying 2n gamete production in mandarin cv 'Fortune'. A new method to locate the centromere, based on the best fit between observed heterozygosity restitution within a linkage group and theoretical functions under either partial or no chiasmata interference hypotheses was successfully applied to linkage group II. The maximum value of heterozygosity restitution and the pattern of restitution along this linkage group would suggest there is partial chiasma interference. The implications of such a restitution mechanism for citrus breeding are discussed.  相似文献   

15.
Four different interspecific hybrids involving three different accessions of Aegilops longissima Schweinf. & Muschl. with high grain iron and zinc content and three Triticum turgidum L. subsp. durum (Desf.) Husn. cultivars with low micronutrient content were made for durum wheat biofortification and investigated for chromosome pairing, fertility, putative amphiploidy, and micronutrient content. The chromosome pairing in the 21-chromosome F1 hybrids (ABSl) consisted of 0-6 rod bivalents and occasionally 1 trivalent. All the F1 hybrids, however, unexpectedly showed partial but variable fertility. The detailed meiotic investigation indicated the simultaneous occurrence of two types of aberrant meiotic divisions, namely first-division restitution and single-division meiosis, leading to regular dyads and unreduced gamete formation and fertility. The F2 seeds, being putative amphiploids (AABBSlSl), had nearly double the chromosome number (40-42) and regular meiosis and fertility. The F1 hybrids were intermediate between the two parents for different morphological traits. The putative amphiploids with bold seed size had higher grain ash content and ash iron and zinc content than durum wheat cultivars, suggesting that Ae. longissima possesses a better genetic system(s) for uptake and seed sequestration of iron and zinc, which could be transferred to elite durum and bread wheat cultivars and exploited.  相似文献   

16.
The normal course of meiosis depends on regular pairing of homologous chromosomes. In intergeneric hybrids, including those of wheat, there is no chromosome pairing because there are no homologs. In F1 wheat/rye hybrids, pairing is largely prevented by the pairing homoeologous1 (Ph1) gene. In its presence, there are only rare instances of pairing; most chromosomes are univalent, and their orientation at metaphase I initiates different pathways of the meiotic cycle. The meiotic-like pathway includes a combination of the reductional and the equational + reductional steps at AI followed by the second division. The resulting gametes are mostly non-functional. The mitotic-like pathway involves equational division of univalents at AI and the absence of the second division. Any fertility of wheat/rye hybrids depends on the production of unreduced gametes arising from meiotic restitution (mitotic-like division). We examined the meiotic pairing in wheat/rye hybrids created from wheat lines with single rye chromosome substitutions and Ph1 present. This guaranteed F1 meiosis with one pair of rye homologs. All hybrids formed bivalents, but proportions of meiocytes with bivalents varied. In the meiocytes where bivalents were present, there was a higher tendency for the meiotic-like pathway, while in meiocytes where bivalent pairing failed, the tendency was stronger for the mitotic-like pathway. Among the equationally dividing cells, we observed more than 90 % of meiocytes without bivalents, where rye homologs did not form bivalents, too. The data indicate a potential application of wheat/rye lines in producing genetic stocks of amphidiploids with designated genomic constitutions.  相似文献   

17.
J Li  D L Klindworth  F Shireen  X Cai  J Hu  S S Xu 《Génome》2006,49(12):1545-1554
The aneuploid stocks of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husnot) and common wheat (T. aestivum L.) have been developed mainly in 'Langdon' (LDN) and 'Chinese Spring' (CS) cultivars, respectively. The LDN-CS D-genome chromosome disomic substitution (LDN-DS) lines, where a pair of CS D-genome chromosomes substitute for a corresponding homoeologous A- or B-genome chromosome pair of LDN, have been widely used to determine the chromosomal locations of genes in tetraploid wheat. The LDN-DS lines were originally developed by crossing CS nulli-tetrasomics with LDN, followed by 6 backcrosses with LDN. They have subsequently been improved with 5 additional backcrosses with LDN. The objectives of this study were to characterize a set of the 14 most recent LDN-DS lines and to develop chromosome-specific markers, using the newly developed TRAP (target region amplification polymorphism)-marker technique. A total of 307 polymorphic DNA fragments were amplified from LDN and CS, and 302 of them were assigned to individual chromosomes. Most of the markers (95.5%) were present on a single chromosome as chromosome-specific markers, but 4.5% of the markers mapped to 2 or more chromosomes. The number of markers per chromosome varied, from a low of 10 (chromosomes 1A and 6D) to a high of 24 (chromosome 3A). There was an average of 16.6, 16.6, and 15.9 markers per chromosome assigned to the A-, B-, and D-genome chromosomes, respectively, suggesting that TRAP markers were detected at a nearly equal frequency on the 3 genomes. A comparison of the source of the expressed sequence tags (ESTs), used to derive the fixed primers, with the chromosomal location of markers revealed that 15.5% of the TRAP markers were located on the same chromosomes as the ESTs used to generate the fixed primers. A fixed primer designed from an EST mapped on a chromosome or a homoeologous group amplified at least 1 fragment specific to that chromosome or group, suggesting that the fixed primers might generate markers from target regions. TRAP-marker analysis verified the retention of at least 13 pairs of A- or B-genome chromosomes from LDN and 1 pair of D-genome chromosomes from CS in each of the LDN-DS lines. The chromosome-specific markers developed in this study provide an identity for each of the chromosomes, and they will facilitate molecular and genetic characterization of the individual chromosomes, including genetic mapping and gene identification.  相似文献   

18.
Polyploidy is well recognized as a major force in plant speciation. Among the polyploids in nature, allopolyploids are preponderant and include important crop plants like bread wheat, Triticum aestivum L. (2n = 6x = 42; AABBDD genomes). Allopolyploidy must result through concomitant or sequential events that entail interspecific or intergeneric hybridization and chromosome doubling in the resultant hybrids. To gain insight into the mechanism of evolution of wheat, we extracted polyhaploids of 2 cultivars, Chinese Spring (CS) and Fukuhokomugi (Fuko), of bread wheat by crossing them with maize, Zea mays L. ssp. mays. The derived Ph1-polyhaploids (2n = 3x = 21; ABD) showed during meiosis mostly univalents, which produced first-division restitution (FDR) nuclei that in turn gave rise to unreduced (2n) male gametes with 21 chromosomes. The haploids on maturity set some viable seed. The mean number of seeds per spike was 1.45 +/- 0.161 in CS and 2.3 +/- 0.170 in Fuko. Mitotic chromosome preparations from root tips of the derived plantlets revealed 2n = 42 chromosomes, that is, twice that of the parental polyhaploid, which indicated that they arose by fusion of unreduced male and female gametes formed by the polyhaploid. The Ph1-induced univalency must have produced 2n gametes and hence bilateral sexual polyploidization and reconstitution of disomic bread wheat. These findings highlight the quantum jump by which bread wheat evolved from durum wheat in nature. Thus, bread wheat offers an excellent example of rapid evolution by allopolyploidy. In the induced polyhaploids (ABD) that are equivalent of amphihaploids, meiotic phenomena such as FDR led to regeneration of parental bread wheat, perhaps a simulation of the evolutionary steps that occurred in nature at the time of the origin of hexaploid wheat.  相似文献   

19.
Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.  相似文献   

20.
六倍体普通小麦(Triticum aestivum L.)是由四倍体小麦(T.turgidum L.)与二倍体节节麦(Aegilops tanschii Coss.)天然杂交然后通过染色体自然加倍形成的异源多倍体.这一起源过程是自然条件下天然发生的,它的发生需要具备一个条件:四倍体小麦与节节麦的天然杂交种子在自然条件(没有幼胚培养等)下能够正常发芽出苗.我们从22份节节麦中发现来自中东的节节麦AS60在不采用幼胚培养等人工辅助条件下,仍然很容易与四倍体小麦和普通小麦产生有生活力的杂种植株.AS60与四倍体小麦的杂交种子有50.0%(反交)及57.1%(正交)的种子,而AS60与六倍体普通小麦的杂交种子则有45.5%不需幼胚培养等措施能够正常发芽、生长.AS60的这一特征正是普通小麦起源过程需要的条件.最后探讨了这一发现对小麦遗传改良和对普通小麦起源演化研究的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号