首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
A marker-saturated linkage map of potato was used to genetically map a locus involved in the resistance against wart disease Synchytrium endobioticum race 1. The locus mapped on the long arm of chromosome 4 and is named Sen1-4 in contrast to a Sen1 locus on chromosome 11. The AFLP markers from the Sen1-4 interval enabled the isolation of BAC clones from an 11 genome equivalent BAC library. This was achieved via fingerprinting of BAC pools with the AFLP primer pairs that resemble the genetic marker loci. With non-selective AFLP primers, fingerprints of individual BAC clones were generated to analyse the overlap between BAC clones using FPC. This resulted in a complete contig and a minimal tiling path of 14 BAC clones enclosing the Sen1-4 locus. The BAC contig has a genetic length of ~6 cM and a physical length of ~1 Mb. Our results demonstrate that map-based cloning of Sen1-4 can be pursued on the basis of a strategy of marker saturation alone. Genetic resolution achieved by screening large numbers of offspring for recombination events may not be required. Together with the construction of the BAC contig, a physical map with the position of the markers is accomplished in one step. This provides proof of concept for the utility of the marker saturation that is offered by the ultra dense AFLP map of potato for gene cloning.  相似文献   

2.
 The recessive gene, xa13, confers resistance to Philippine race 6 (PXO99) of the bacterial blight pathogen Xanthomonas oryzae pv oryzae. Fine genetic mapping and physical mapping were conducted as initial steps in an effort to isolate the gene. Using nine selected DNA markers and two F2 populations of 132 and 230 plants, xa13 was fine-mapped to a genomic region <4 cM on the long arm of rice chromosome 8, flanked by two RFLP markers, RG136 and R2027. Four DNA markers, RG136, R2027, S14003, and G1149, in the target region were used to identify bacterial artificial chromosome (BAC) clones potentially harboring the xa13 locus from a rice BAC library. A total of 11 BACs were identified, forming four separate contigs including a single-clone contig, 29I3, associated with the RG136 STS marker, the S14003 contig consisting of four clones (44F8, 41O2, 12A16, and 12F20), the G1149 contig with two clones, 23D11 and 21H18, and the R2027 contig consisting of four overlapping clones, 42C23, 30B5, 6B7 and 21H14. Genetic mapping indicated that the xa13 locus was contained in the R2027 contig. Chromosomal walking on the R2027 contig resulted in two more clones, 33C7 and 14L3. DNA fingerprinting showed that the six clones of the R2027 contig were overlapping. Clone 44F8 hybridized with a single fragment from the clone 14L3, integrating the R2027 and S14003 contigs into a single contig consisting of ten BAC clones with a total size of approximately 330 kb. The physical presence of the xa13 locus in the contig was determined by mapping the ends of the BAC inserts generated by TAIL-PCR. In an F2 population of 230 plants, the BAC-end markers 42C23R and 6B7F flanked the xa13 locus. The probes 21H14F and 21H14R derived from BAC clone 21H14 were found to flank xa13 at a distance of 0.5 cM on either side, using a second F2 population of 132 plants. Thus, genetic mapping indicated that the contig and the 96-kb clone, 21H14, contained the xa13 locus. Received: 15 August 1998 / Accepted: 29 September 1998  相似文献   

3.
The restoration of male fertility in the sorghum IS1112 C (A3) male-sterile cytoplasm is through a two-gene gametophytic system involving complementary action of the restoring alleles Rf3 and Rf4. To develop markers suitable for mapping rf4, AFLP technology was applied to bulks of sterile and fertile individuals from a segregating BC3F1 population. Three AFLP markers linked to rf4 were identified and subsequently converted to STS/CAPS markers, two of which are co-dominant. Based on a population of 378 BC1F1 individuals, two STS/CAPS markers, LW7 and LW8, mapped to within 5.31 and 3.18 cM, respectively, of rf4, while an STS marker, LW9, was positioned 0.79 cM on the flanking side of rf4. Markers LW8 and LW9 were used to screen sorghum BAC libraries to identify the genomic region encoding rf4. A series of BAC clones shown to represent a genomic region of linkage group E were identified by the rf4-linked markers. A contig of BAC clones flanking the LW9 marker represent seed clones on linkage group E, from which fine mapping of the rf4 locus and chromosome walking can be initiated. Received: 20 June 2001 / Accepted: 3 August 2001  相似文献   

4.
The availability of high-density anchored markers is a prerequisite for reliable construction of a deep coverage BAC contig, which leads to creation of a sequence-ready map in the target chromosomal region. Unfortunately, such markers are not available for most plant species, including woody perennial plants. Here, we report on an efficient approach to build a megabase-size sequence-ready map in the apple genome for the Vf region containing apple scab resistance gene(s) by targeting AFLP-derived SCAR markers to this specific genomic region. A total of 11 AFLP-derived SCAR markers, previously tagged to the Vf locus, along with three other Vf-linked SCAR markers have been used to screen two apple genome BAC libraries. A single BAC contig which spans the Vf region at a physical distance of approximately 1,100 kb has been constructed by assembling the recovered BAC clones, followed by closure of inter-contig gaps. The contig is 4 ×deep, and provides a minimal tiling path of 16 contiguous and overlapping BAC clones, thus generating a sequence-ready map. Within the Vf region, duplication events have occurred frequently, and the Vf locus is restricted to the ca. 290 kb region covered by a minimum of three overlapping BAC clones.  相似文献   

5.
The oomycete plant pathogen Phytophthora infestans is the causal agent of late blight, one of the most devastating diseases of potato worldwide. As part of efforts to clone avirulence (Avr) genes and pathogenicity factors from P. infestans, we have constructed a bacterial artificial chromosome (BAC) library from an isolate containing six Avr genes. The BAC library comprises clones with an average insert size of 98 kb and represents an estimated 10 genome equivalents. A three-dimensional pooling strategy was developed to screen the BAC library for amplified fragment length polymorphism (AFLP) markers, as this type of marker has been extensively used in construction of a P. infestans genetic map. Multiple positive clones were identified for each AFLP marker tested. The pools were used to construct a contig of 11 BAC clones in a region of the P. infestans genome containing a cluster of three avirulence genes. The BAC contig is predicted to encompass the Avr11 locus but mapping of the BAC ends will be required to determine if the Avr3 and Avr10 loci are also present in the BAC contig. These results are an important step towards the positional cloning of avirulence genes from P. infestans, and the BAC library represents a valuable resource for largescale studies of oomycete genome organisation and gene content.  相似文献   

6.
Melon necrotic spot virus (MNSV) is a member of the genus Carmovirus, which produces severe yield losses in melon and cucumber crops. The nsv gene is the only known natural source of resistance against MNSV in melon, and confers protection against all widespread strains of this virus. nsv has been previously mapped in melon linkage group 11, in a region spanning 5.9 cM, saturated with RAPD and AFLP markers. To identify the nsv gene by positional cloning, we started construction of a high-resolution map for this locus. On the basis of the two mapping populations, F2 and BC1, which share the same resistant parent PI 161375 (nsv/nsv), and using more than 3,000 offspring, a high-resolution genetic map has been constructed in the region around the nsv locus, spanning 3.2 cM between CAPS markers M29 and M132. The availability of two melon BAC libraries allowed for screening and the identification of new markers closer to the resistance gene, by means of BAC-end sequencing and mapping. We constructed a BAC contig in this region and identified the marker 52K20sp6, which co-segregates with nsv in 408 F2 and 2.727 BC1 individuals in both mapping populations. We also identified a single 100 kb BAC that physically contains the resistance gene and covers a genetic distance of 0.73 cM between both BAC ends. These are the basis for the isolation of the nsv recessive-resistance gene.  相似文献   

7.
Photoperiod-sensitive genic male-sterile rice has a number of desirable characteristics for hybrid rice production. Previous studies identified pms1, located on chromosome 7, as a major locus for photoperiod-sensitive genic male sterility. The objective of this study was to localize the pms1 locus to a specific DNA fragment by genetic and physical mapping. Using 240 highly sterile individuals and a random sample of 599 individuals from an F2 population of over 5000 individuals from a cross between Minghui 63 and 32001S, we localized the pms1 locus by molecular marker analysis to a genetic interval of about 4 cM, 0.25 cM from RG477 on one side and 3.8 cM from R1807 on the other side. A contig map composed of seven BAC clones spanning approximate 500 kb in length was constructed for the pms1 region by screening a BAC library of Minghui 63 DNA using RFLP markers and chromosomal walking. Analysis of recombination events in the pms1 region among the highly sterile individuals reduced the length of the contig map to three BAC clones. Sequencing of one BAC clone, 2109, identified two SSR markers located 85 kb apart in the clone that flanked the pms1 locus on both sides, as indicated by the distribution of recombination events. We thus concluded that the pms1 locus was located on the fragment bounded by the two SSR markers.  相似文献   

8.
A BAC library to serve as a general tool for the physical mapping and positional cloning of rose genes has been constructed from Rosa rugosa DNA. With 27,264 clones the library contains 5.2 genome equivalents. The library was used to assemble a contig of BAC clones spanning Rdr1, a locus that confers resistance to blackspot. For this purpose fine-scale mapping of the target locus was achieved by bulked segregant analysis using 816 AFLP primer combinations. The target region around Rdr1 comprises about 400 kb and is covered by a minimum of six BAC clones. Furthermore, the detection of at least five resistance gene analogs of the TIR-NBS-LRR family on the contig indicates the presence of a cluster of resistance genes around Rdr1. These results will not only allow the isolation and identification of Rdr1 in the near future, but also provide the tools for the physical mapping and positional cloning of other horticulturally interesting genes in roses.  相似文献   

9.
Approaches utilizing microlinearity between related species allow for the identification of syntenous regions and orthologous genes. Within the barley Chromosome 7H(1) is a region of high recombination flanked by molecular markers cMWG703 and MWG836. We present the constructed physical contigs linked to molecular markers across this region using bacterial artificial chromosomes (BAC) from the cultivar Morex. Barley expressed sequence tags (EST), identified by homology to rice chromosome 6 between the rice molecular markers C425A and S1434, corresponded to the barley syntenous region of Chromosome 7H(1) Bins 2–5 between molecular markers cMWG703-MWG836. Two hundred and thirteen ESTs were genetically mapped yielding 267 loci of which 101 were within the target high recombination region while 166 loci mapped elsewhere. The 101 loci were joined by 43 other genetic markers resulting in a highly saturated genetic map. In order to develop a physical map of the region, ESTs and all other molecular markers were used to identify Morex BAC clones. Seventy-four BAC contigs were formed containing 2–102 clones each with an average of 19 and a median of 13 BAC clones per contig. Comparison of the BAC contigs, generated here, with the Barley Physical Mapping Database contigs, resulted in additional overlaps and a reduction of the contig number to 56. Within cMWG703-MWG836 are 24 agriculturally important traits including the seedling spot blotch resistance locus, Rcs5. Genetic and physical analysis of this region and comparison to rice indicated an inversion distal of the Rcs5 locus. Three BAC clone contigs spanning the Rcs5 locus were identified. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Rf1 is a nuclear gene that controls fertility restoration in cases of cytoplasmic male sterility caused by the Owen cytoplasm in sugar beet. In order to isolate the gene by positional cloning, a BAC library was constructed from a restorer line, NK198, with the genotype Rf1Rf1. The library contained 32,180 clones with an average insert size of 97.8 kb, providing 3.4 genome equivalents. Five AFLP markers closely linked to Rf1 were used to screen the library. As a result, we identified eight different BAC clones that were clustered into two contigs. The gap between the two contigs was filled by chromosome walking. To map the Rf1 region in more detail, we developed five cleaved amplified polymorphic sequence (CAPS) markers from the BAC DNAs identified, and carried out genotyping of 509 plants in the mapping population with the Rf1-flanking AFLP and CAPS markers. Thirteen plants in which recombination events had occurred in the vicinity of the Rf1 locus were identified and used to map the molecular markers relative to each other and to Rf1. In this way, we were able to restrict the possible location of the Rf1 gene to a minimum of six BAC clones spanning an interval of approximately 250 kb. The first two authors contributed equally to this work.  相似文献   

11.
Mutation in the cauliflower gene Or causes high levels of -carotene to accumulate in various tissues of the plant that are normally devoid of carotenoids. To decipher the molecular basis by which Or regulates carotenoid accumulation, we have undertaken the isolation of Or by a map-based cloning strategy. Two previously isolated, locus-specific, sequence-characterized amplified region (SCAR) markers that flank Or were employed for the analysis of a large segregating population consisting of 1632 F2 individuals, and a high-resolution genetic linkage map of the Or locus region was developed. To facilitate positional cloning, we constructed a cauliflower genomic library in a bacterial artificial chromosome (BAC) vector, using high molecular weight DNA from Or homozygotes. The BAC library comprises 60,288 clones with an average insert size of 110 kb, and represents an estimated 10-fold coverage of the genome. A BAC contig encompassing the Or locus was established by screening the library with a marker that is closely linked to Or and by identifying overlapping BAC clones by chromosome walking. Physical mapping delimited the Or locus to a 50-kb DNA fragment within a single BAC clone, which corresponds to a genetic interval of 0.3 cM.Communicated by R. Hagemann  相似文献   

12.
In pepper, the TMV resistance locus L is syntenic to the tomato I2 and the potato R3 loci on chromosome 11. In this report, we identified pepper bacterial artificial chromosome (BAC) clones corresponding to the I2 and R3 loci and developed L-linked markers using the BAC sequence information. A BAC library was screened using the tomato I2C-1 gene as a probe. The resulting clones were sorted further by PCR screening, sequencing, and genetic mapping. A linkage analysis revealed that BAC clone 082F03 could be anchored to the target region near TG36 on chromosome 11. Using the 082F03 sequence, more BAC clones were identified and a BAC contig spanning 224 kb was constructed. Gene prediction analysis showed that there were at least three I2/R3 R gene analogs (RGAs) in the BAC contig. Three DNA markers closely linked (about 1.2 cM) to the L 4 gene were developed by using the BAC contig sequence. The single nucleotide polymorphism marker 087H3T7 developed in this study was subjected to linkage analysis in L 4 - and L 3 -segregating populations together with previously developed markers. The 189D23M marker, which is known to co-segregate with L 3 , was located on the opposite side of 087H3T7, about 0.7 cM away from L 4 . This supports the idea that L 3 and L 4 may be different genes closely linked within the region instead of different alleles at the same locus. Finally, use of flanking markers in molecular breeding program for introgression of L 4 to elite germplasm against most aggressive tobamoviruses pathotype P1,2,3 is discussed.  相似文献   

13.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

14.
Identification of the sex-determining genes of the Nile tilapia (Oreochromis niloticus) has important implications for commercial aquaculture. We previously identified an XX/XY sex-determining locus in this species within a 10-cM interval between markers GM201 and UNH995 on linkage group one (LG1). In order to refine this region, we developed new AFLP markers using bulked segregant analysis of the mapping families. We identified three AFLP markers that showed a sex-specific pattern of segregation. All three mapped near, but just outside, the previously identified sex-determining region on LG1. Hybridization of BAC clones containing these markers to chromosome spreads confirmed that the XX/XY sex-determining locus is on one of the small chromosomes in O. niloticus.  相似文献   

15.
Aphids cause serious physical and economic damage to most major crops throughout the world, and there is a pressing requirement to isolate genes conferring aphid resistance. The Sd-1 locus in Malus spp. (apple) confers resistance against the rosy leaf-curling aphid (Dysaphis devecta Wlk.), and was recently positioned within a 1.3-cM region on linkage group 7, flanked by molecular markers. These markers were used as a basis for development of a BAC contig spanning the locus, together with adapter-mediated amplification of flanking sequences to obtain BAC insert-end sequences, and fingerprinting of BAC clones. Approximately 800 kb of the Sd-1 genomic region was covered by 19 overlapping BACs, with an average insert size of 75-150 kb. The physical-genetic distance ratio was estimated at 460 kb/cM, although the distribution of recombination events was irregular with respect to estimated physical distance. Recombinant analysis and development of new markers allowed Sd-1 to be positioned within an interval of approximately 180 kb located on either of two overlapping BACs. From one of these, an insert end sequence showed a significant degree of similarity to nucleotide binding site-leucine rich repeat (NBS-LRR) resistance genes. Fluorescent in situ hybridization (FISH) of BAC clones within the contig enabled positioning and orientation of the locus within a euchromatic region, very close to the telomere of linkage group 7.  相似文献   

16.
Lr1 is a dominant leaf rust resistance gene located on chromosome 5DL of bread wheat and the wild species Aegilops tauschii. In this study, three polymorphic markers (WR001, WR002, and WR003) were developed from resistance gene analogs (RGAs) clustering around the Lr1 locus. Using these and other markers, Lr1 was mapped to a genetic interval of 0.79 cM in Ae. tauschii and 0.075 cM in wheat. The CAPS marker WR003, derived from LR1RGA1, co-segregated with Lr1 in both mapping populations of wheat and Ae. tauschii. For isolation of Lr1, two genomic BAC libraries (from Ae. tauschii and hexaploid wheat) were screened using the tightly flanking marker PSR567F and a set of nested primers derived from the conserved region of the RGA sequences. Approximately 400 kb BAC contig spanning the Lr1 locus was constructed. The LR1RGA1 encoding a CC-NBS-leucine-rich repeat (LRR) type of protein was the only one of the four RGAs at the Lr1 locus, which co-segregated with leaf rust resistance. Therefore, it represents a very good candidate for Lr1. The allelic sequences of LR1RGA1 from resistant and susceptible lines revealed a divergent DNA sequence block of ∼605 bp encoding the LRR repeats 9–15, whereas the rest of the sequences were mostly identical. Within this sequence block, the 48 non-synonymous changes resulted in 44 amino acid differences. This indicates that LR1RGA1 likely evolved through one or more recombination or gene conversion events with unknown genes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The rj1 mutation of soybean is a simple recessive allele in a single line that arose as a spontaneous mutation in a population; it exhibits non-nodulation with virtually all Bradyrhizobium and Sinorhizobium strains. Here, we described fine genetic and physical mapping of the rj1 locus on soybean chromosome 2. The initial mapping of the rj1 locus using public markers indicated that A343.p2, a sequence-based marker that contains sequence similar to a part of the LjNFR1 gene regulating nodule formation as a member of lysin motif-type receptor-like kinase (LYK) family, maps very close to or cosegregates with the rj1 locus. The sequence of A343.p2 is 100% identical to parts of two BAC clone sequences (GM_WBb0002O19 and GM_WBb098N11) that contain three members of the LYK family. We analyzed the sequence contig (262 kbp) of the two BAC clones by resequencing and subsequent fine genetic and physical mapping. The results indicated that rj1 is located in a gene-rich region with a recombination rate of 120 kbp/cM: several fold higher than the genome average. Among the LYK genes, NFR1α is most likely the gene encoded at the Rj1 locus. The non-nodulating rj1 allele was created by a single base-pair deletion that results in a premature stop codon. Taken together, the fine genetic and physical mapping of the Rj1-residing chromosomal region, combined with the unexpected observation of a putative recombination hotspot, allowed us to demonstrate that the Rj1 locus most likely encodes the NFR1α gene.  相似文献   

18.
In Peronospora parasitica (At) (downy mildew), the genetic determinants of cultivar-specific recognition by Arabidopsis thaliana are the Arabidopsis thaliana-recognised (ATR) avirulence genes. We describe the identification of 10 amplified fragment length polymorphism (AFLP) markers that define a genetic mapping interval for the ATR1Nd avirulence allele, the presence of which is perceived by the RPP1Nd resistance gene. Furthermore, we have constructed a P. parasitica (At) bacterial artificial chromosome (BAC) library comprising over 630Mb of cloned DNA. We have isolated 16 overlapping clones from the BAC library that form a contig spanning the genetic interval. BAC sequence-derived markers and a total mapping population of 311 F(2) individuals were used to refine the ATR1Nd locus to a 1cM interval that is represented by four BAC clones and spans less than 250kb of DNA. This work demonstrates that map-based cloning techniques are feasible in this organism and provides the critical foundations for cloning ATR1Nd using such a strategy.  相似文献   

19.
The pepper (Capsicum annuum) Bs3 gene confers resistance to avrBs3-expressing strains of the bacterial spot pathogen Xanthomonas campestris pv. vesicatoria. To physically delimit Bs3, a pepper YAC library was screened with two flanking DNA markers that are separated from Bs3 by 1.0 and 1.2 cM, respectively resulting in the identification of three YAC clones. Genetic mapping of the corresponding YACends revealed however, that these YACs do not cover Bs3 and subsequent screens with newly developed YACend markers failed to identify new YAC clones. Marker saturation at the Bs3 locus was carried out by amplified fragment length polymorphism (AFLP). The analysis of 1,024 primer combinations resulted in the identification of 47 new Bs3-linked AFLPs. High-resolution linkage mapping of Bs3 was accomplished by inspecting more than 4,000 F2 segregants resulting in a genetic resolution of 0.01 cM. Using tightly Bs3-linked YACend- and AFLP-derived markers we established a Bs3-spanning BAC contig and physically delimited the target gene within one BAC clone. The analysis of the Bs3-containing genomic region revealed substantial local variation in the correlation of genetic and physical distances.  相似文献   

20.
The Ma gene for root-knot nematode (RKN) resistance from Myrobalan plum (Prunus cerasifera L.) confers a complete-spectrum and a heat-stable resistance to Meloidogyne spp., conversely to Mi-1 from tomato, which has a more restricted spectrum and a reduced efficiency at high temperature. This gene was identified from a perennial self-incompatible near-wild rootstock species and lies in cosegregation with the SCAR marker SCAFLP2 on the Prunus linkage group 7 in a 2.3 cM interval between the SCAR SCAL19 and SSR pchgms6 markers. We initiated a map-based cloning of Ma and report here the strategy that rapidly led to fine mapping and direct chromosome landing at the locus. Three pairs of bulks, totaling 90 individuals from half-sibling progenies derived from the Ma-heterozygous resistant accession P.2175, were constructed using mapping data, and saturation of the Ma region was performed by bulked segregant analysis (BSA) of 320 AFLP primer pair combinations. The closest three AFLP markers were transformed into codominant SCARs or CAPS designated SCAFLP3, SCAFLP4 and SCAFLP5. By completing the mapping population up to 1,332 offspring from P.2175, Ma and SCAFLP2 were mapped in a 0.8 cM interval between SCAFLP3 and SCAFLP4. A large-insert bacterial artificial chromosome (BAC) DNA library of P.2175, totaling 30,720 clones with a mean insert size of 145 kb and a 14–15× Prunus haploid genome coverage was constructed and used to land on the Ma spanning interval with few BAC clones. As P.2175 is heterozygous for the gene, we constructed the resistant and susceptible physical contigs by PCR screening of the library with codominant markers. Additional microsatellite markers were then designed from BAC subcloning or BAC end sequencing. In the resistant contig, a single 280 kb BAC clone was shown to carry the Ma gene; this BAC contains two flanking markers on each side of the gene as well as two cosegregating markers. These results should allow future cloning of the Ma gene in this perennial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号