首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The recessive gene, xa13, confers resistance to Philippine race 6 (PXO99) of the bacterial blight pathogen Xanthomonas oryzae pv oryzae. Fine genetic mapping and physical mapping were conducted as initial steps in an effort to isolate the gene. Using nine selected DNA markers and two F2 populations of 132 and 230 plants, xa13 was fine-mapped to a genomic region <4 cM on the long arm of rice chromosome 8, flanked by two RFLP markers, RG136 and R2027. Four DNA markers, RG136, R2027, S14003, and G1149, in the target region were used to identify bacterial artificial chromosome (BAC) clones potentially harboring the xa13 locus from a rice BAC library. A total of 11 BACs were identified, forming four separate contigs including a single-clone contig, 29I3, associated with the RG136 STS marker, the S14003 contig consisting of four clones (44F8, 41O2, 12A16, and 12F20), the G1149 contig with two clones, 23D11 and 21H18, and the R2027 contig consisting of four overlapping clones, 42C23, 30B5, 6B7 and 21H14. Genetic mapping indicated that the xa13 locus was contained in the R2027 contig. Chromosomal walking on the R2027 contig resulted in two more clones, 33C7 and 14L3. DNA fingerprinting showed that the six clones of the R2027 contig were overlapping. Clone 44F8 hybridized with a single fragment from the clone 14L3, integrating the R2027 and S14003 contigs into a single contig consisting of ten BAC clones with a total size of approximately 330 kb. The physical presence of the xa13 locus in the contig was determined by mapping the ends of the BAC inserts generated by TAIL-PCR. In an F2 population of 230 plants, the BAC-end markers 42C23R and 6B7F flanked the xa13 locus. The probes 21H14F and 21H14R derived from BAC clone 21H14 were found to flank xa13 at a distance of 0.5 cM on either side, using a second F2 population of 132 plants. Thus, genetic mapping indicated that the contig and the 96-kb clone, 21H14, contained the xa13 locus. Received: 15 August 1998 / Accepted: 29 September 1998  相似文献   

2.
Colinearity in gene content and order between rice and closely related grass species has emerged as a powerful tool for gene identification. Using a comparative genetics approach, we have identified the rice genomic region syntenous to the region deleted in the wheat chromosome pairing mutant ph2a, with a view to identifying genes at the Ph2 locus that control meiotic processes. Utilising markers known to reside within the region deleted in ph2a, and data from wheat, barley and rice genetic maps, markers delimiting the region deleted on wheat chromosome 3DS in the ph2a mutant were used to locate the syntenous region on the short arm of rice chromosome 1. A contig of rice genomic sequence was identified from publicly available sequence information and used in blast searches to identify wheat expressed sequence tags (ESTs) exhibiting significant similarity. Southern analysis using a subset of identified wheat ESTs confirmed a syntenous relationship between the rice and wheat genomic regions and defined precisely the extent of the deleted segment in the ph2a mutant. A 6.58-Mb rice contig generated from 60 overlapping rice chromosome 1 P1 artificial chromosome (PAC) clones spanning the syntenous rice region has enabled identification of 218 wheat ESTs putatively located in the region deleted in ph2a. What seems to be a terminal deletion on chromosome 3DS is estimated to be 80 Mb in length. Putative candidate genes that may contribute to the altered meiotic phenotype of ph2a are discussed.  相似文献   

3.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

4.
The wheat Tsn1 gene confers sensitivity to the host-selective toxin Ptr ToxA produced by the tan spot fungus (Pyrenophora tritici-repentis). The long-term goal of this research is to isolate Tsn1 using a positional cloning approach. Here, we evaluated 54 ESTs (expressed sequence tags) physically mapped to deletion bin 5BL 0.75–0.76, which is a gene-rich region containing Tsn1. Twenty-three EST loci were mapped as either PCR-based single-stranded conformational polymorphism or RFLP markers in a low-resolution wheat population. The genetic map corresponding to the 5BL 0.75–0.76 deletion bin spans 18.5 cM and contains 37 markers for a density of 2 markers/cM. The EST-based genetic map will be useful for tagging other genes, establishing colinearity with rice, and anchoring sequence ready BAC contigs of the 5BL 0.75–0.76 deletion bin. High-resolution mapping showed that EST-derived markers together with previously developed AFLP-derived markers delineated Tsn1 to a 0.8 cM interval. Flanking markers were used to screen the Langdon durum BAC library and contigs of 205 and 228 kb flanking Tsn1 were assembled, sequenced, and anchored to the genetic map. Recombination frequency averaged 760 kb/cM across the 228 kb contig, but no recombination was observed across the 205 kb contig resulting in an expected recombination frequency of more than 10 Mb/cM. Therefore, chromosome walking within the Tsn1 region may be difficult. However, the sequenced BACs allowed the identification of one microsatellite in each contig for which markers were developed and shown to be highly suitable for marker-assisted selection of Tsn1.  相似文献   

5.
Hong  Guofan 《Plant molecular biology》1997,35(1-2):129-133
A rapid and accurate strategy for rice contig map construction was described. Rice BAC library with average insert of 120 kb in length was used as building materials in contig mapping. The contigs of varied lengths ranging from 500 kb to several megabases with sufficient redundancy to ensure the accuracy of the joining between individual BACs were formed by fingerprinting. The contigs were then assigned to and ordered along the chromosomes by various molecular markers through their hybridization against the whole rice genomic library. The accuracy of clone overlaps in contig was further confirmed by the existence in contigs of well fit stacks of marker-lodged clones. He contigs thus obtained covered nearly the rice genome.  相似文献   

6.
Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory.  相似文献   

7.
A marker-saturated linkage map of potato was used to genetically map a locus involved in the resistance against wart disease Synchytrium endobioticum race 1. The locus mapped on the long arm of chromosome 4 and is named Sen1-4 in contrast to a Sen1 locus on chromosome 11. The AFLP markers from the Sen1-4 interval enabled the isolation of BAC clones from an 11 genome equivalent BAC library. This was achieved via fingerprinting of BAC pools with the AFLP primer pairs that resemble the genetic marker loci. With non-selective AFLP primers, fingerprints of individual BAC clones were generated to analyse the overlap between BAC clones using FPC. This resulted in a complete contig and a minimal tiling path of 14 BAC clones enclosing the Sen1-4 locus. The BAC contig has a genetic length of ~6 cM and a physical length of ~1 Mb. Our results demonstrate that map-based cloning of Sen1-4 can be pursued on the basis of a strategy of marker saturation alone. Genetic resolution achieved by screening large numbers of offspring for recombination events may not be required. Together with the construction of the BAC contig, a physical map with the position of the markers is accomplished in one step. This provides proof of concept for the utility of the marker saturation that is offered by the ultra dense AFLP map of potato for gene cloning.  相似文献   

8.
In cultivated barley (Hordeum vulgare ssp. vulgare), six-rowed spikes produce three times as many seeds per spike as do two-rowed spikes. The determinant of this trait is the Mendelian gene vrs1, located on chromosome 2H, which is syntenous with rice (Oryza sativa) chromosomes 4 and 7. We exploited barley–rice micro-synteny to increase marker density in the vrs1 region as a prelude to its map-based cloning. The rice genomic sequence, covering a 980 kb contig, identified barley ESTs linked to vrs1. A high level of conservation of gene sequence was obtained between barley chromosome 2H and rice chromosome 4. A total of 22 EST-based STS markers were placed within the target region, and the linear order of these markers in barley and rice was identical. The genetic window containing vrs1 was narrowed from 0.5 to 0.06 cM, which facilitated covering the vrs1 region by a 518 kb barley BAC contig. An analysis of the contig sequence revealed that a rice Vrs1 orthologue is present on chromosome 7, suggesting a transposition of the chromosomal segment containing Vrs1 within barley chromosome 2H. The breakdown of micro-collinearity illustrates the limitations of synteny cloning, and stresses the importance of implementing genomic studies directly in the target species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The availability of high-density anchored markers is a prerequisite for reliable construction of a deep coverage BAC contig, which leads to creation of a sequence-ready map in the target chromosomal region. Unfortunately, such markers are not available for most plant species, including woody perennial plants. Here, we report on an efficient approach to build a megabase-size sequence-ready map in the apple genome for the Vf region containing apple scab resistance gene(s) by targeting AFLP-derived SCAR markers to this specific genomic region. A total of 11 AFLP-derived SCAR markers, previously tagged to the Vf locus, along with three other Vf-linked SCAR markers have been used to screen two apple genome BAC libraries. A single BAC contig which spans the Vf region at a physical distance of approximately 1,100 kb has been constructed by assembling the recovered BAC clones, followed by closure of inter-contig gaps. The contig is 4 ×deep, and provides a minimal tiling path of 16 contiguous and overlapping BAC clones, thus generating a sequence-ready map. Within the Vf region, duplication events have occurred frequently, and the Vf locus is restricted to the ca. 290 kb region covered by a minimum of three overlapping BAC clones.  相似文献   

10.
Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement.  相似文献   

11.
A map-based cloning strategy has been employed to isolate Ctv, a single dominant gene from Poncirus trifoliata that confers resistance to citrus tristeza virus (CTV), the most important viral pathogen of citrus. Cloning of this gene will allow development of commercially acceptable, virus-resistant cultivars. A high-resolution genetic linkage map of the Ctv locus region was developed using a backcross population of 678 individuals. Three DNA markers that were closely linked or co-segregated with Ctv were identified and used to screen BAC libraries derived from an intergeneric hybrid of Poncirus and Citrus. Through chromosome walking and landing, two BAC contigs were developed: one encompassing the Ctv region, and the other spanning the allelic susceptibility gene region. The resistance gene contig consists of 20 BAC clones and is approximately 550 kb in length; the susceptibility gene contig consists of 16 BAC clones and extends about 450 kb. The Ctv locus was localized within a genomic region of approximately 180 kb by genetic mapping of BAC insert ends. The BAC contigs were integrated with the genetic map; variation in the ratio of genetic to physical distance was observed in the vicinity of Ctv. Southern hybridization data indicated that a few copies of NBS-LRR class sequences are distributed at or around the Ctv locus. Efforts are being made to assign the Ctv locus to a smaller genomic fragment whose function can be confirmed through genetic complementation of a CTV susceptible phenotype. These results indicate that map-based gene cloning is feasible in a woody perennial.  相似文献   

12.
Urofacial (Ochoa) syndrome is an autosomal recessive disease characterized by distorted facial expression and urinary abnormalities. Previously, we mapped the UFS gene to chromosome 10q23-q24 and narrowed the interval to one YAC clone of 1410 kb. Here, we have constructed a BAC/PAC contig of the 1-Mb region using STS content mapping with 42 BAC/PAC-end sequences, 9 previously reported and 16 newly identified microsatellite markers, and 14 EST markers. A total of 26 polymorphic microsatellite markers were genotyped for 31 UFS patients from Colombia and 2 patients from the United States. Haplotype analyses suggest that the UFS gene is located within two overlapping BAC clones, a region of <360 kb of DNA sequence. We tested 42 EST markers previously mapped to the D10S1709-D10S603 interval against the BAC/PAC contig and identified 11 ESTs located in the 1-Mb region. Four of the 11 ESTs mapped to the 360-kb UFS critical region. Shotgun sequencing of the two BAC clones and BLASTN search of the EST databases revealed 3 other ESTs contained in the UFS critical region. These results will facilitate the cloning and identification of the UFS gene.  相似文献   

13.
Photoperiod-sensitive genic male-sterile rice has a number of desirable characteristics for hybrid rice production. Previous studies identified pms1, located on chromosome 7, as a major locus for photoperiod-sensitive genic male sterility. The objective of this study was to localize the pms1 locus to a specific DNA fragment by genetic and physical mapping. Using 240 highly sterile individuals and a random sample of 599 individuals from an F2 population of over 5000 individuals from a cross between Minghui 63 and 32001S, we localized the pms1 locus by molecular marker analysis to a genetic interval of about 4 cM, 0.25 cM from RG477 on one side and 3.8 cM from R1807 on the other side. A contig map composed of seven BAC clones spanning approximate 500 kb in length was constructed for the pms1 region by screening a BAC library of Minghui 63 DNA using RFLP markers and chromosomal walking. Analysis of recombination events in the pms1 region among the highly sterile individuals reduced the length of the contig map to three BAC clones. Sequencing of one BAC clone, 2109, identified two SSR markers located 85 kb apart in the clone that flanked the pms1 locus on both sides, as indicated by the distribution of recombination events. We thus concluded that the pms1 locus was located on the fragment bounded by the two SSR markers.  相似文献   

14.
A major quantitative trait loci (QTL) conditioning common bacterial blight (CBB) resistance in common bean (Phaseolus vulgaris L.) lines HR45 and HR67 was derived from XAN159, a resistant line obtained from an interspecific cross between common bean lines and the tepary bean (P. acutifolius L.) line PI319443. This source of CBB resistance is widely used in bean breeding. Several other CBB resistance QTL have been identified but none of them have been physically mapped. Four molecular markers tightly linked to this QTL have been identified suitable for marker assisted selection and physical mapping of the resistance gene. A bacterial artificial chromosome (BAC) library was constructed from high molecular weight DNA of HR45 and is composed of 33,024 clones. The size of individual BAC clone inserts ranges from 30 kb to 280 kb with an average size of 107 kb. The library is estimated to represent approximately sixfold genome coverage. The BAC library was screened as BAC pools using four PCR-based molecular markers. Two to seven BAC clones were identified by each marker. Two clones were found to have both markers PV-tttc001 and STS183. One preliminary contig was assembled based on DNA finger printing of those positive BAC clones. The minimum tiling path of the contig contains 6 BAC clones spanning an estimated size of 750 kb covering the QTL region.  相似文献   

15.
In pepper, the TMV resistance locus L is syntenic to the tomato I2 and the potato R3 loci on chromosome 11. In this report, we identified pepper bacterial artificial chromosome (BAC) clones corresponding to the I2 and R3 loci and developed L-linked markers using the BAC sequence information. A BAC library was screened using the tomato I2C-1 gene as a probe. The resulting clones were sorted further by PCR screening, sequencing, and genetic mapping. A linkage analysis revealed that BAC clone 082F03 could be anchored to the target region near TG36 on chromosome 11. Using the 082F03 sequence, more BAC clones were identified and a BAC contig spanning 224 kb was constructed. Gene prediction analysis showed that there were at least three I2/R3 R gene analogs (RGAs) in the BAC contig. Three DNA markers closely linked (about 1.2 cM) to the L 4 gene were developed by using the BAC contig sequence. The single nucleotide polymorphism marker 087H3T7 developed in this study was subjected to linkage analysis in L 4 - and L 3 -segregating populations together with previously developed markers. The 189D23M marker, which is known to co-segregate with L 3 , was located on the opposite side of 087H3T7, about 0.7 cM away from L 4 . This supports the idea that L 3 and L 4 may be different genes closely linked within the region instead of different alleles at the same locus. Finally, use of flanking markers in molecular breeding program for introgression of L 4 to elite germplasm against most aggressive tobamoviruses pathotype P1,2,3 is discussed.  相似文献   

16.
Fine physical mapping of the rice stripe resistance gene locus, Stvb-i   总被引:8,自引:0,他引:8  
The Stvb-i gene confers stripe disease resistance to rice. For positional cloning, we constructed a physical map spanning 1.8-cM distance between flanking markers, consisting of 18 bacterial artificial chromosome (BAC) clones, around the Stvb-i locus on rice chromosome 11. The 18 clones were isolated by screening a BAC library derived from a japonica cultivar, Shimokita, with three Stvb-i-linked RFLP markers and DraI-digested DNAs of a yeast artificial chromosome (YAC) clone. The results of Southern hybridization and restriction enzyme analyses indicated that these BAC clones are contiguous and cover about a 700-kb region containing the Stvb-i allele. Utilizing end and internal fragments of the BAC insert DNAs, 33 molecular markers were generated within a small chromosomal region including the Stvb-i locus. Genotyping analysis with these markers for a resistant cultivar and four nearby recombinants selected from 120 F2 individuals indicated that Stvb-i is contained within an approximately 286-kb region covered with two overlapping BAC clones. Received: 25 August 1999 / Accepted: 16 November 1999  相似文献   

17.
18.
Asparagus officinalis L. is a dioecious plant. A region called the M-locus located on a pair of homomorphic sex chromosomes controls the sexual dimorphism in asparagus. The aim of this work was to clone the region determining sex in asparagus from its position in the genome. The structure of the region encompassing M should be investigated and compared to the sex-determining regions in other dioecious model species. To establish an improved basis for physical mapping, a high-resolution genetic map was enriched with AFLP markers closely linked to the target locus by carrying out a bulked segregant analysis. By screening a BAC library with AFLP- and STS-markers followed by chromosome walking, a physical map with eight contigs could be established. However, the gaps between the contigs could not be closed due to a plethora of repetitive elements. Surprisingly, two of the contigs on one side of the M-locus did not overlap although they have been established with two markers, which mapped in a distance as low as 0.25 cM flanking the sex locus. Thus, the clustering of the markers indicates a reduced recombination frequency within the M-region. On the opposite side of the M-locus, a contig was mapped in a distance of 0.38 cM. Four closely linked BAC clones were partially sequenced and 64 putative ORFs were identified. Interestingly, only 25% of the ORFs showed sequence similarity to known proteins and ESTs. In addition, an accumulation of repetitive sequences and a low gene density was revealed in the sex-determining region of asparagus. Molecular cytogenetic and sequence analysis of BACs flanking the M-locus indicate that the BACs contain highly repetitive sequences that localize to centromeric and pericentromeric locations on all asparagus chromosomes, which hindered the localization of the M-locus to the single pair of sex chromosomes. We speculate that dioecious Silene, papaya and Asparagus species may represent three stages in the evolution of XX, XY sex determination systems. Given that asparagus still rarely produces hermaphroditic flowers and has homomorphic sex chromosomes, this species may be an ideal system to further investigates early sex chromosome evolution and the origins of dioecy.  相似文献   

19.
20.
Physical mapping of the barley stem rust resistance gene rpg4   总被引:5,自引:0,他引:5  
The barley stem rust resistance gene rpg4 was physically and genetically localized on two overlapping BAC clones covering an estimated 300-kb region of the long arm of barley chromosome 7(5H). Initially, our target was mapped within a 6.0-cM region between the previously described flanking markers MWG740 and ABG391. This region was then saturated by integrating new markers from several existing barley and rice maps and by using BAC libraries of barley cv. Morex and rice cv. Nipponbare. Physical/genetic distances in the vicinity of rpg4 were found to be 1.0 Mb/cM, which is lower than the average for barley (4 Mb/cM) and lower than that determined by translocation breakpoint mapping (1.8 Mb/cM). Synteny at high resolution levels has been established between the region of barley chromosome 7(5H) containing the rpg4 locus and the subtelomeric region of rice chromosome 3 between markers S16474 and E10757. This 1.7-cM segment of the rice genome was covered by two overlapping BAC clones, about 250 kb of total length. In barley the markers S16474 and E10757 genetically delimit rpg4, lying 0.6 cM distal and 0.4 cM proximal to the locus, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号