首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 484 毫秒
1.
将编码扩展青霉碱性脂肪酶(PEL)的cDNA克隆到酵母整合型质粒pPIC3.5K,电转化His4缺陷型巴斯德毕赤酵母(Pichia pastoris)GS115,通过橄榄油MM平板及PCR方法筛选和鉴定重组子。重组子发酵液经SDSPAGE分析、橄榄油检验板鉴定,表明扩展青霉碱性脂肪酶基因在巴斯德毕赤酵母中获得了高效表达。表达蛋白分泌至培养基中,分子量约28kD,与扩展青霉碱性脂肪酶大小一致,占分泌蛋白的95%。橄榄油检验板检验表明该表达蛋白可分解橄榄油,通过优化该表达菌的发酵条件,以橄榄油为底物进行酶活测定,其发酵液酶活可达260 u/mL。  相似文献   

2.
扩展青霉碱性脂肪酶基因在毕赤酵母中的高效表达   总被引:12,自引:1,他引:11  
将编码扩展青霉碱性脂肪酶 (PEL)的cDNA克隆到酵母整合型质粒pPIC3.5K ,电转化His4缺陷型巴斯德毕赤酵母 (Pichiapastoris)GS115 ,通过橄榄油 MM平板及PCR方法筛选和鉴定重组子。重组子发酵液经SDS PAGE分析、橄榄油检验板鉴定 ,表明扩展青霉碱性脂肪酶基因在巴斯德毕赤酵母中获得了高效表达。表达蛋白分泌至培养基中 ,分子量约 2 8kD ,与扩展青霉碱性脂肪酶大小一致 ,占分泌蛋白的 95 %。橄榄油检验板检验表明该表达蛋白可分解橄榄油 ,通过优化该表达菌的发酵条件 ,以橄榄油为底物进行酶活测定 ,其发酵液酶活可达 2 6 0u mL。  相似文献   

3.
【目的】构建疏棉状嗜热丝孢菌脂肪酶(Thermomyces lanuginosus lipase,TLL)在毕赤酵母GS115中的细胞表面展示体系,筛选展示成功且酶活力及展示率较高的重组子作为全细胞催化剂,并研究其酶学性质。【方法】克隆TLL基因tll,以酿酒酵母细胞壁蛋白Sed1p为锚定蛋白,构建表面展示载体pPICZαA-TLS。重组载体经SacⅠ线性化后转入毕赤酵母GS115中,经三丁酸甘油酯平板检测及摇甁发酵筛选获得高酶活力的毕赤酵母重组子,采用抗FLAG标签一抗和R-PE荧光素标记的二抗处理细胞后,进行荧光显微镜检测和流式细胞仪分析,并考察全细胞催化剂的最适反应温度和pH、金属离子耐受性等酶学性质。【结果】成功构建TLL毕赤酵母细胞表面展示体系,筛选到1株具有三丁酸甘油酯和橄榄油水解活力的克隆子,经1%的甲醇诱导发酵120 h后,水解橄榄油酶活力达257.8 U/g干细胞。经抗体处理后的重组菌发酵细胞在荧光显微镜下呈现强烈的红色荧光,流式细胞仪分析结果也证实脂肪酶被成功展示在酵母细胞表面,展示率达98.36%。展示的TLL作为全细胞催化剂水解对硝基苯酚丁酸酯(pNPB)的最适温度为30℃,最适pH为8.0,且具备良好的热稳定性和有机溶剂耐受性;K+、Ca2+、Mg2+对其有微弱的激活作用,Mn2+、Ni2+则有微弱的抑制作用,Cu2+的抑制作用较强,而EDTA、SDS、Tween 20对酶活力影响不明显。【结论】首次将TLL脂肪酶成功展示在毕赤酵母细胞表面,获得具有较高水解活力和良好酶学特性的全细胞催化剂,为表面展示TLL脂肪酶的规模化应用奠定了技术基础。  相似文献   

4.
采用双层平板法应用于嗜盐古菌铁载体的原位检测。双层平板的上层为不添加铁离子的嗜盐古菌培养基, 嗜盐古菌可在其上生长, 在缺铁胁迫下可向外界分泌铁载体; 下层为含有CAS检测液用于铁载体检测的琼脂。当上层平板生长的嗜盐古菌分泌的铁载体透过培养基渗透到下层检测琼脂后, 即可在下层检测平板上产生明显的特征性的铁载体螯合晕圈, 表明双层平板法在嗜盐古菌的铁载体检测中确实可行, 且较原有的嗜盐古菌铁载体检测方法简便、直接。  相似文献   

5.
采用双层平板法应用于嗜盐古菌铁载体的原位检测.双层平板的上层为不添加铁离子的嗜盐古菌培养基,嗜盐古菌可在其上生长,在缺铁胁迫下可向外界分泌铁载体;下层为含有CAS检测液用于铁载体检测的琼脂.当上层平板生长的嗜盐古菌分泌的铁载体透过培养基渗透到下层检测琼脂后,即可在下层检测平板上产生明显的特征性的铁载体螯合晕圈,表明双层平板法在嗜盐古菌的铁载体检测中确实可行,且较原有的嗜盐古菌铁载体检测方法简便、直接.  相似文献   

6.
采用a凝集素作为载体蛋白,首次将南极假丝酵母脂肪酶A展示在酿酒酵母细胞表面,通过MD平板筛选获得表面展示型的CALA酵母工程菌株。免疫荧光检测显示CALA被成功展示在酵母细胞壁表面,重组子经诱导后能在三丁酸甘油酯板上形成透明圈,说明展示的CALA具有活性。重组酵母在液体培养基培养72 h,活性达到最高,为80.4 U/g干细胞。酿酒酵母展示的CALA最适温度及pH值为70°C和pH 8.0。经50°C保温2 h,仍含有60%水解酶活力。展示的CALA在pH 7.0和pH 8.0溶液中比较稳定。经DMSO处理2 h,展示的CALA仍保持70%的活性。以上结果表明酵母展示的CALA可作为一种有潜质商业用途的全细胞催化剂。  相似文献   

7.
为了研究毕赤酵母中转录因子Mxrlp在毕赤酵母代谢调控中所起的作用,构建一株以南极假丝酵母脂肪酶B基因(CALB)作为报告基因,MXR1基因完全缺失的毕赤酵母基因工程菌株.将重组质粒pPIC9K-CALB转化毕赤酵母GS115,利用三丁酸甘油酯平板筛选得到分泌表达CALB的重组茵GS115/pPIC9K-CALB.通过重叠延伸PCR方法获得一段中间含有博来霉素抗性基因sh ble,两翼大约各有1 200 bp与毕赤酵母MXR1基因上下游同源的基因片段,将此片段用氯化锂法转化毕赤酵母细胞GS1 15/pPIC9 K-CALB后,利用博来霉素抗性及CALB酶活力丧失双重筛选的方法得到一株MXR1基因完全缺失的毕赤酵母基因工程菌株.该菌株在以甲醇为唯一碳源的培养基中不生长,在以乙醇、葡萄糖或者甘油为唯一碳源的培养基中生长缓慢.结果表明转录Mxrlp因子在毕赤酵母中的多条代谢途径中起着关键性的作用,主要涉及甲醇、乙醇、甘油和葡萄糖等代谢途径.  相似文献   

8.
类产碱假单胞菌耐热碱性脂肪酶基因的克隆   总被引:8,自引:0,他引:8  
将类产碱假单胞菌(Pseudomonas pseudoalcaligene)总DNA经Sau3AI部分酶解后的35~50kbDNA片段与经BamHI线性化及CIAP处理过的粘粒pIJ285连接,以大肠杆菌LE392为受体,构建类产碱假单胞菌的基因文库。通过三丁酸甘油酯平板和橄榄油平板法检测克隆子,获得一株具有耐热碱性脂肪酶活性的菌株LE392(pHZ1401)。随后将pHZ1401上的外源DNA片段进行亚克隆,从而获得了具有脂肪酶活性的菌株HB101(pHZ1402)和HB101(pHZ1403),它们分别携带有2.9kb和3.0kb的外源片段。两外源片段约有2kb的重叠区。HB101(pHZ1403)所分泌的脂肪酶活性比HB101(pHZ1402)高4倍,是出发菌的5倍。  相似文献   

9.
脂肪酶产生菌的筛选及一株黑曲霉产脂肪酶最适条件研究   总被引:10,自引:0,他引:10  
通过固体平板筛选,从520株真菌中分离得到194株产脂肪酶菌。再选择其中透明圈较大的43株菌进行液体复筛,得到产酶活力最高的一株菌为黑曲霉L_1。最后,确定了此菌的最适产酶条件为:橄榄油作碳源,酵母膏作氮源,pH5.8,28℃培养4天。  相似文献   

10.
毕赤酵母组成型表达脂肪酶及其高通量筛选方法   总被引:1,自引:1,他引:0  
【目的】获得组成型表达脂肪酶毕赤酵母,建立利用橄榄油罗丹明B平板高通量筛选组成型表达华根霉脂肪酶基因的有效方法。【方法】运用PCR技术从pGAPZαA表达载体上扩增得到GAP启动子片段,插入到表达载体pPIC9K-proRCL中,构建组成型表达载体pGAPK-proRCL。在保留含有同源双交换重组序列的诱导型启动子AOX1序列的基础上,电转化后华根霉Rhizopus chinensis CCTCC M201021脂肪酶基因proRCL表达盒在毕赤酵母基因组上发生双交换整合事件,从而组成型表达单拷贝的华根霉脂肪酶基因。【结果】重组菌发酵144 h后,脂肪酶最高酶活为130 U/mL。利用橄榄油罗丹明B平板高通量筛选组成型表达华根霉脂肪酶基因。【结论】该方法将初筛时间从12 d缩短为3 d,排除了多拷贝突变株的干扰,为后续脂肪酶的定向进化及筛选奠定了基础。  相似文献   

11.
Summary Fifty-nine lipase-producing fungal strains were isolated from Brazilian savanna soil by employing enrichment culture tecniques. An agar plate medium containing bile salts and olive oil emulsion was employed for isolating and growing fungi in primary screening assay. Twenty-one strains were selected by the ratio of the lipolytic halo radius and the colonies radius. Eleven strains were considered good producers under conditions of submerged liquid fermentation (shaken cultures) and solid-state fermentation. The most productive strain, identified as Colletotrichum gloesporioides, produced 27,700 U/l of lipase under optimized conditions and the crude lipase preparation was capable of hydrolysing a broad range of substrates including lard, natural oils and tributyrin.  相似文献   

12.
The LIP2 lipase from the yeast Yarrowia lipolytica (YLLIP2) was obtained from two genetically modified strains with multi-copies of the lip2 gene and further purified using gel filtration and cation exchange chromatography. Four YLLIP2 isoforms were identified and subjected to N-terminal amino-acid sequencing and mass spectrometry analysis. These isoforms differed in their glycosylation patterns and their molecular masses ranged from 36,874 to 38,481 Da, whereas the polypeptide mass was 33,385 Da. YLLIP2 substrate specificity was investigated using short (tributyrin), medium (trioctanoin) and long (olive oil) chain triglyceride substrates at various pH and bile salt concentrations, and compared with those of human gastric and pancreatic lipases. YLLIP2 was not inhibited by bile salts at micellar concentrations with any of the substrates tested, and maximum specific activities were found to be 10,760+/-115 U/mg on tributyrin, 16,920+/-480 U/mg on trioctanoin and 12,260+/-700 U/mg on olive oil at pH 6.0. YLLIP2 was found to be fairly stable and still active on long chain triglycerides (1590+/-430 U/mg) at pH 4.0, in the presence of bile salts. It is therefore a good candidate for use in enzyme replacement therapy as a means of treating pancreatic exocrine insufficiency.  相似文献   

13.
Subtropical soil microbial isolates were screened for carbohydrate, tributyrin, or olive oil hydrolysis using agar plates supplemented with the corresponding substrates. A heterotrophic, aerobic, Gram-positive strain displaying activity on tributyrin was selected and further characterized. Analysis of the morphological and physiological traits of the strain placed it as a member of the genus Rhodococcus. Further 16S rDNA sequencing revealed a 99% identity to Rhodococcus erythropolis. The strain displayed lipolytic activity on fatty-acid-derivative substrates of short chain length, with cell extract fractions having highest activity, as confirmed by the presence, after zymogram analysis, of a ca. 60-kDa intracellular protein band with activity on 4-methylumbelliferone-butyrate substrate. The presence of such a lipolytic enzyme, similar to those found in other Gram-positive bacteria, indicates that the strain could be of interest for certain biotechnological applications, like the synthesis of pharmaceuticals or biocide detoxification.  相似文献   

14.
Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S?=?1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries.  相似文献   

15.
The gene encoding the extracellular lipase of Staphylococcus xylosus (SXL) was cloned using PCR technique. The sequence corresponding to the mature lipase was subcloned in the pET-14b expression vector, with a strong T7 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. High level expression of the lipase by Escherichia coli BL21 (DE3) cells harbouring the lipase gene containing expression vector was observed upon induction with 0.4 mM IPTG at 37 degrees C. One-step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified His-tagged SXL was 1500 or 850 U/mg using tributyrin or olive oil emulsion as substrate, respectively. It has been proposed that the region near the residue Asp290 could be involved in the selection of the substrate. Therefore, we also mutated the residue Asp 290 by Ala using site-directed mutagenesis. The mutant SXL-D290A was overexpressed in E. coli BL21 (DE3) and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged SXL-D290A mutant was 1000 U/mg using either tributyrin or olive oil emulsion as substrate. A comparative study of the wild type (His(6)-SXL) and the mutant (His(6)-SXL-D290A) proteins was carried out. Our results confirmed that Asp290 is important for the chain length specificity and catalytic efficiency of the enzyme.  相似文献   

16.
The soil yeast Lipomyces starkeyi was tested for its ability to degrade triazine herbicides. Polyvinylalcohol (PVA) was employed as a solid medium in culture plates instead of agar. The cell sizes of the control (without nitrogen source) on the PVA gel plate were much smaller than those on the agar gel plate. The difference between the diameters of the sample and control colonies on the PVA gel plate were almost twice those of the colonies on the agar gel plate (1.9 and 1.0 mm, respectively). Thus, the PVA gel plate is much better than the agar plate for evaluating the degree of utilization of a sole nitrogen source. The yeast grew well (more than 4 mm in diameter) with 1,3,5-triazine or cyanuric acid as nitrogen source. In addition, melamine and thiocyanuric acid inhibited growth of the yeast, and the sizes of colonies were smaller than those of the control. All triazine herbicides tested (simazine, atrazine, cyanazine, ametryn, and prometryn) could be degraded and assimilated by L. starkeyi.  相似文献   

17.
The gene encoding a cutinase homolog, LC-cutinase, was cloned from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. LC-cutinase shows the highest amino acid sequence identity of 59.7% to Thermomonospora curvata lipase. It also shows the 57.4% identity to Thermobifida fusca cutinase. When LC-cutinase without a putative signal peptide was secreted to the periplasm of Escherichia coli cells with the assistance of the pelB leader sequence, more than 50% of the recombinant protein, termed LC-cutinase*, was excreted into the extracellular medium. It was purified and characterized. LC-cutinase* hydrolyzed various fatty acid monoesters with acyl chain lengths of 2 to 18, with a preference for short-chain substrates (C(4) substrate at most) most optimally at pH 8.5 and 50°C, but could not hydrolyze olive oil. It lost activity with half-lives of 40 min at 70°C and 7 min at 80°C. LC-cutinase* had an ability to degrade poly(ε-caprolactone) and polyethylene terephthalate (PET). The specific PET-degrading activity of LC-cutinase* was determined to be 12 mg/h/mg of enzyme (2.7 mg/h/μkat of pNP-butyrate-degrading activity) at pH 8.0 and 50°C. This activity is higher than those of the bacterial and fungal cutinases reported thus far, suggesting that LC-cutinase* not only serves as a good model for understanding the molecular mechanism of PET-degrading enzyme but also is potentially applicable for surface modification and degradation of PET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号