首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The complete sequence of a potyvirus from maize in Zhejiang Province was determined. The RNA was 9596 nucleotides long, excluding the 3'-poly (A) tail, and there was a single long open reading frame (ORF) of 9192 nts encoding a 346.1 ku polyprotein. The polyprotein had substantial amino acid sequence homology with those encoded by the RNAs of a Chinese isolate of sorghum mosaic virus (SrMV-C) and a Bulgarian isolate of maize dwarf mosaic virus, but it was most closely related to sugarcane mosaic virus (SCMV) isolates, for which only partial sequences have been published. According to the published criteria for distinguishing potyviruses, the sequence reported here is clearly a strain of SCMV, but it also showed a surprisingly high amino acid homology with SrMV-C in the HC-Pro, P3 and Cl proteins.  相似文献   

2.
选取我国SCMV优势株系A株系的分离物SCMV-CA为材料,经过病毒和病毒RNA的提纯,反转录获得病毒cDNA,并克隆到载体pUC19的SmaⅠ位点上,筛选得到多个重组质粒,选取其中一个克隆SCMV-CA54进行测序,得到一个全长为1296bp的苷酸序列,这段序列由一个长为1044bp的开放阅读框架(ORF)和一个长279bp的3‘末端非编码区序列(3‘-UTR)及poly(A)尾巴组成。这个ORF包括病毒完整的外壳蛋白(CP)及部分核内含体蛋白(b(NIb)基因序列,将所得序列同已知SCMV亚组中各株系分离物的核苷酸和氨基酸进行同源性比较,结果表明该序列与其它株系分离的CP核苷酸序列的同源性介于63.7%-77.6%之间,氨基酸的同源性介于64%-89%之间。根据马玲薯Y病毒属的序列同源性划分标准,SCMV-CA与其它株系或分离物的同源性关系均介于种与株系进分标准之间,这是我国首次报道SCMV CP基因序列。  相似文献   

3.
The amino acid sequences of the non-structural protein (molecular weight 35,000; 3a protein) from three plant viruses — cucumber mosaic, brome mosaic and alfalfa mosaic have been systematically compared using the partial genomic sequences for these three viruses already available. The 3a protein of cucumber mosaic virus has an amino acid sequence homology of 33.7% with the corresponding protein of brome mosaic virus. A similar protein from alfalfa mosaic virus has a homology of 18.2% and 14.2% with the protein from brome mosaic virus and cucumber mosaic virus, respectively. These results suggest that the three plant viruses are evolutionarily related, although, the evolutionary distance between alfalfa mosaic virus and cucumber mosaic virus or brome mosaic virus is much larger than the corresponding distance between the latter two viruses.  相似文献   

4.
5.
Wheat yellow mosaic virus (WYMV) isolate HC was used for viral cDNA synthesis and sequencing. The results show that the viral RNA1 is 7629 nueleotides encoding a polyprotein with 2407 amino acids, from which seven putative proteins may be produced by an autolytie cleavage processing besides the viral coat protein. The RNA2 is 3639 nueleotides and codes for a polypretein of 903 amino acids, which may contain two putative non-structural proteins. Although WYMV shares a similarity in genetic organization to wheat spindle streak mosaic virus (WSSMV), the identities in their nucleotide sequences or deduced amino acid sequences are as low as 70% and 75 % respectively. Based on this result, it is confirmed that WYMV and WSSMV are different species within Bymovirus.  相似文献   

6.
选取我国SCMV优势株系A株系的分离物SCMV-CA为材料,经过病毒和病毒RNA的提纯,反转录获得病毒cDNA,并克隆到载体pUC19的SmaI位点上,筛选得到多个重组质粒。选取其中一个克隆SCMV-CA54进行测序,得到一个全长为1296 bp的核苷酸序列。这段序列由一个长为1044 bp的开放阅读框架(ORF)和一个长279 bp的3’末端非编码区序列(3'-UTR)及poly(A)尾巴组成。这个ORF包括病毒完整的外壳蛋白(CP)及部分核内含体蛋白b(NIb)基因序列。将所得序列同已知SCMV亚组中各株系分离物的核苷酸和氨基酸进行同源性比较,结果表明该序列与其它株系分离物CP核苷酸序列的同源性介于63.7%~77.6%之间,氨基酸的同源性介于64%~89%之间。根据马铃薯Y病毒属的序列同源性划分标准,SCMV-CA与其它株系或分离物的同源性关系均介于种与株系划分标准之间。这是我国首次报道SCMVCP基因序列。  相似文献   

7.
西瓜花叶病毒中国分离株全基因组核苷酸序列测定   总被引:3,自引:0,他引:3  
西瓜花叶病毒(Watermelon mosaic virus,WMV)是马铃薯Y病毒属(Potyvirus)成员,主要危害西瓜和甜瓜,引起花叶病。在田间,该病害主要由蚜虫以非持久性方式传播。西瓜和甜瓜花叶病在国内陕西、山东、云南、辽宁、山西、新疆、河南和黑龙江等地广泛发生[1-6]。从20世纪80年代中期开始发生,逐渐上升为普遍发生的主要病害。我国大部分地区因西瓜和甜瓜病毒病造成的损失为30%~50%,甚至会绝产,西瓜花叶病毒已经成为制约西瓜和甜瓜高产稳产最主要的因素之一[7]。到目前为止,多数工作集中在对西瓜和甜瓜病毒病的鉴定,在分子生物学上仅限于对CP基因…  相似文献   

8.
9.
10.
RNA沉默是真核生物体内由病毒来源的干扰小RNA(virus derived small interfering RNA, vsiRNA)沉默复合物介导目标RNA特异降解的一种保守机制,通过对vsiRNA分析可进行植物病毒病原鉴定。本文利用小RNA深度测序技术对感病半夏叶片进行鉴定,结果发现,表现典型花叶症状的半夏叶片受到大豆花叶病毒(Soybean mosaic virus, SMV)、黄瓜花叶病毒(Cucumber mosaic virus, CMV)、芋花叶病毒(Dasheen mosaic virus, DsMV)、魔芋花叶病毒(Konjac mosaic virus, KoMV)、烟草花叶病毒(Tobacco mosaic virus, TMV)等多种病毒的复合侵染。为明确SMV山西半夏分离物(SMV-SXBX)的进化关系,进行SMV-SXBX全基因组克隆与分析,获得SMV-SXBX全长为9 735 nt,编码一个由3 105个氨基酸组成的多聚蛋白质。通过核苷酸与氨基酸序列比对发现,SMV-SXBX与半夏分离物P同源性最高,分别为91.1%和94.1%,且系统发育分析表明,SMV-SXBX与半夏SMV分离物P聚为一簇。同时,也对vsiRNA进行了系统分析,研究结果有望为半夏SMV的有效防治提供一定科学依据。  相似文献   

11.
Brief historyIn 1993, severe mosaic and necrosis symptoms were observed on corn (maize) and wheat from several Great Plains states of the USA. Based on the geographical location of infections, the disease was named High Plains disease and the causal agent was tentatively named High Plains virus. Subsequently, researchers renamed this virus as maize red stripe virus and wheat mosaic virus to represent the host and symptom phenotype of the virus. After sequencing the genome of the pathogen, the causal agent of High Plains disease was officially named as High Plains wheat mosaic virus. Hence, High Plains virus, maize red stripe virus, wheat mosaic virus, and High Plains wheat mosaic virus (HPWMoV) are synonyms for the causal agent of High Plains disease.TaxonomyHigh Plains wheat mosaic virus is one of the 21 definitive species in the genus Emaravirus in the family Fimoviridae.VirionThe genomic RNAs are encapsidated in thread‐like nucleocapsids in double‐membrane 80–200 nm spherical or ovoid virions.Genome characterizationThe HPWMoV genome consists of eight single‐stranded negative‐sense RNA segments encoding a single open reading frame (ORF) in each genomic RNA segment. RNA 1 is 6,981‐nucleotide (nt) long, coding for a 2,272 amino acid protein of RNA‐dependent RNA polymerase. RNA 2 is 2,211‐nt long and codes for a 667 amino acid glycoprotein precursor. RNA 3 has two variants of 1,439‐ and 1,441‐nt length that code for 286 and 289 amino acid nucleocapsid proteins, respectively. RNA 4 is 1,682‐nt long, coding for a 364 amino acid protein. RNA 5 and RNA 6 are 1,715‐ and 1,752‐nt long, respectively, and code for 478 and 492 amino acid proteins, respectively. RNA 7 and RNA 8 are 1,434‐ and 1,339‐nt long, code for 305 and 176 amino acid proteins, respectively.Biological propertiesHPWMoV can infect wheat, corn (maize), barley, rye brome, oat, rye, green foxtail, yellow foxtail, and foxtail barley. HPWMoV is transmitted by the wheat curl mite and through corn seed.Disease managementGenetic resistance against HPWMoV in wheat is not available, but most commercial corn hybrids are resistant while sweet corn varieties remain susceptible. Even though corn hybrids are resistant to virus, it still serves as a green bridge host that enables mites to carry the virus from corn to new crop wheat in the autumn. The main management strategy for High Plains disease in wheat relies on the management of green bridge hosts. Cultural practices such as avoiding early planting can be used to avoid mite buildup and virus infections.  相似文献   

12.
The gene action of 2 sugarcane mosaic virus (SCMV) resistance loci in maize, Scmv1 and Scmv2, was evaluated for potyvirus resistance in an isogenic background. All 4 homozygous and 5 heterozygous isogenic genotypes were produced for introgressions of the resistant donor (FAP1360A) alleles at both loci into the susceptible parent (F7) genetic background using simple sequence repeat markers. For SCMV and maize dwarf mosaic virus (MDMV), virus symptoms appeared rapidly in the 3 homozygous genotypes, with susceptibility alleles fixed at 1 or both loci. Although the 9 isogenic genotypes revealed a high level of resistance to Zea mosaic virus (ZeMV), the same 3 homozygous genotypes were only partially resistant. This indicates that 1 resistance gene alone is not sufficient for complete resistance against SCMV, MDMV, and ZeMV. Scmv1 showed strong early and complete dominant gene action to SCMV, but it gradually became partially dominant. Scmv2 was not detected at the beginning, showing dominant gene action initially and additive gene action at later stages. Both genes interacted epistatically (for a high level of resistance, at least 1 resistance allele at each of both loci is required). This implies that double heterozygotes at the 2 loci are promising for producing SCMVresistant hybrids. Results are discussed with respect to prospects for isolation of SCMV and MDMV resistance genes.  相似文献   

13.
14.
Maize dwarf mosaic is the most widespread virus disease affecting corn production in Hungary. In attempts to identify the causal virus by test plant reactions, enzyme‐linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), only Maize dwarf mosaic virus (MDMV) was detected. To further characterize Hungarian isolates of MDMV, one isolate from each of the sweet corn varieties Dallas, Royalty and GH23‐85 was selected for sequence analysis of its coat protein (CP) gene. The three Hungarian isolates shared CP amino acid sequence similarities of 95–98% not only with one another but also with MDMV isolates from other countries. However, the N‐terminus of the CP of the ‘Dallas’ isolate was unusual in containing a stretch of 13 additional amino acids. This is the first report of variation in the size of the N‐terminus of the MDMV CP.  相似文献   

15.
16.
Bean golden mosaic virus (BGMV) DNA 1 and 2 have little sequence homology with maize streak virus (MSV), wheat dwarf virus (WDV), and chloris striate mosaic virus (CSMV) DNAs. BGMV DNA 1 and beet curly top virus (BCTV) DNA are closely related, whereas BGMV DNA 2 and BCTV DNA are not related. Direct amino acid homologies of predicted proteins between BGMV ORFs and MSV ORFs, WDV ORFs or CSMV ORFs were 40-50%. BGMV 1L1 and BCTV L1, and BGMV IL3 and BCTV L4 were highly conserved. The sequence TAATATTAC was detected in the loops of hairpin structures of 5 gemini-viruses.  相似文献   

17.
由甘蔗花叶病毒引起的玉米矮花叶病是我国黄淮海地区玉米生产的重要病害,开发抗矮花叶病基因分子标记是开展抗病分子标记辅助育种的基础。本文基于玉米6.00-6.01区域的“一致性抗甘蔗花叶病毒QTL区间”寻找抗病基因的功能保守域,依据序列多态性开发出抗病分子标记InDel-130和InDel-110,在已知抗性的102份玉米自交系中进行验证。通过分析标记抗病带型和感病带型中的抗病和感病自交系数目,卡平方测验表明标记InDel-130在供试自交系中与抗病性的表现独立无关.而标记InDel-110与甘蔗花叶病毒抗性高度相关,为共显性标记,可用于玉米抗甘蔗花叶病毒种质筛选和分子标记辅助育种。  相似文献   

18.
19.
Cymbidium mosaic virus (CyMV) is the most prevalent virus infecting orchids. Here, we report the isolation of partial cDNA clones encoding the genomic RNA of CyMV. Like most of the polyadenylated monopartite positive-strand RNA viruses, the open reading frame (ORF) coding for the viral coat protein (CP) is located at the 3 end. The ORF predicts a polypeptide chain of 220 amino acids with a molecular weight of 23 600. Sequence comparison of this ORF to the CP sequences of potato virus X(PVX) and white clover mosaic virus (WCIMV) revealed a strong amino acid homology in the mid-portion of the CP, but the overall homology was low. The CyMV CP gene was placed downstream of a cauliflower mosaic virus 35S promoter and the chimaeric gene was transferred into Nicotiana benthamiana. Transgenic plants expressing the CyMV CP were protected against CyMV infection.  相似文献   

20.
Summary A comparison was made of the amino acid sequences of the proteins encoded by RNAs 1 and 2 of alfalfa mosaic virus (A1MV) and brome mosaic virus (BMV), and the 126K and 183K proteins encoded by tobacco mosaic virus (TMV). Three blocks of extensive homology of about 200 to 350 amino acids each were observed. Two of these blocks are located in the A1MV and BMV RNA 1 encoded proteins and the TMV encoded 126K protein; they are situated at the N-terminus and C-terminus, respectively. The third block is located in the A1MV and BMV RNA 2 encoded proteins and the C-terminal part of the TMV encoded 183K protein. These homologies are discussed with respect to the functional equivalence of these putative replicase proteins and a possible evolutionary connection between A1MV, BMV and TMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号