首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536352篇
  免费   59253篇
  国内免费   763篇
  2018年   5650篇
  2017年   5396篇
  2016年   7984篇
  2015年   11796篇
  2014年   13515篇
  2013年   17764篇
  2012年   21389篇
  2011年   21631篇
  2010年   14128篇
  2009年   12643篇
  2008年   18744篇
  2007年   19249篇
  2006年   18196篇
  2005年   17355篇
  2004年   17285篇
  2003年   16114篇
  2002年   15692篇
  2001年   20802篇
  2000年   20730篇
  1999年   16634篇
  1998年   6492篇
  1997年   6209篇
  1996年   5850篇
  1995年   5824篇
  1994年   5564篇
  1993年   5556篇
  1992年   13625篇
  1991年   13452篇
  1990年   13183篇
  1989年   12648篇
  1988年   11755篇
  1987年   11016篇
  1986年   10545篇
  1985年   10252篇
  1984年   8632篇
  1983年   7534篇
  1982年   5827篇
  1981年   5264篇
  1980年   4892篇
  1979年   8027篇
  1978年   6541篇
  1977年   5781篇
  1976年   5406篇
  1975年   6263篇
  1974年   6793篇
  1973年   6585篇
  1972年   5889篇
  1971年   5482篇
  1970年   4627篇
  1969年   4567篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
3.
4.
5.
An insufficiently known bivalve and gastropod assemblage from the Early-Middle Miocene (Tarkhanian-Chokrakian) of northern Sinop Province (Turkey), is analyzed. Environments of the assemblage are reconstructed for the Chokrakian as subtidal, with prevailing lime and sandy bottom and good aeration, and partially well vegetated. Impoverishment of the mollusk biocoenose in this part of the marine basin (only 18 bivalve and 22 gastropod species recorded) compared to other areas, including the closest regions, Bulgaria on the west and Georgia on the east, is emphasized. The relatively low diversity of the fauna is probably connected not only with insufficient collecting, but with special hydrological conditions. A special aspect of the fauna is highlighted by the presence of the bivalve Circomphalus foliaceolamellosus subplicatus (Orb.), which is rare in the Chokrakian.  相似文献   
6.
7.
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the CbR290H mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans.  相似文献   
8.
The passive properties of skeletal muscle are often overlooked in muscle studies, yet they play a key role in tissue function in vivo. Studies analyzing and modeling muscle passive properties, while not uncommon, have never investigated the role of fluid content within the tissue. Additionally, intramuscular pressure (IMP) has been shown to correlate with muscle force in vivo and could be used to predict muscle force in the clinic. In this study, a novel model of skeletal muscle was developed and validated to predict both muscle stress and IMP under passive conditions for the New Zealand White Rabbit tibialis anterior. This model is the first to include fluid content within the tissue and uses whole muscle geometry. A nonlinear optimization scheme was highly effective at fitting model stress output to experimental stress data (normalized mean square error or NMSE fit value of 0.993) and validation showed very good agreement to experimental data (NMSE fit values of 0.955 and 0.860 for IMP and stress, respectively). While future work to include muscle activation would broaden the physiological application of this model, the passive implementation could be used to guide surgeries where passive muscle is stretched.  相似文献   
9.
10.
1. Population dynamics and interactions that vary over a species' range are of particular importance in the context of latitudinal clines in biological diversity. Winter moth (Operophtera brumata) and autumnal moth (Epirrita autumnata) are two species of eruptive geometrids that vary widely in outbreak tendency over their range, which generally increases from south to north and with elevation. 2. The predation pressure on geometrid larvae and pupae over an elevational gradient was tested. The effects of background larval density and bird occupancy of monitoring nest boxes on predation rates were also tested. Predation on larvae was tested through exclusion treatments at 20 replicate stations over four elevations at one site, while pupae were set out to measure predation at two elevations at three sites. 3. Larval densities were reduced by bird predation at three lower elevations, but not at the highest elevation, and predation rates were 1.9 times higher at the lowest elevation than at the highest elevation. The rate of predation on larvae was not related to background larval density or nest box occupancy, although there were more eggs and chicks at the lowest elevation. There were no consistent differences in predation on pupae by elevation. 4. These results suggest that elevational variation in avian predation pressure on larvae may help to drive elevational differences in outbreak tendency, and that birds may play a more important role in geometrid population dynamics than the focus on invertebrate and soil predators of previous work would suggest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号