首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a novel method to coat living non-genetically modified (GM) cells with functional recombinant proteins. First, we prepared GM yeast to secrete constructed proteins that have two domains: a functional domain and a binding domain that recognizes other cells. Second, we cocultivated GM and non-GM yeasts that share and coutilize the medium containing recombinant proteins produced by GM yeasts using a filter-membrane-separated cultivation reactor. We confirmed that GM yeast secreted enhanced green fluorescent protein (EGFP) fusion proteins to culture medium. After cocultivation, EGFP fusion proteins produced by GM yeast were targeted to non-GM yeast (Saccharomyces cerevisiae BY4741ΔCYC8 strain) cell surface. Yeast cell-surface engineering is a useful method that enables the coating of GM yeast cell surface with recombinant proteins to produce highly stable and accumulated protein particles. The results of this study suggest that development of cell-surface engineering from GM organisms (GMOs) to living non-GMOs by our novel cocultivation method is possible.  相似文献   

2.
As the first step for production of rat apolipoprotein E (rApoE) in Saccharomyces cerevisiae, the rApoE cDNA was cloned and its nucleotide sequence was determined. When the intact rApoE gene including the presequence-encoding region was expressed under the control of the yeast GAL7 promoter, no protein immunoreactive with anti-rApoE antibody was detected either in the culture medium or inside the cells. For the purpose of the extracellular production of rApoE, three fusion genes were constructed in which the mature rApoE-encoding sequence was connected after the pre, prepro, and whole regions of the gene encoding a fungal aspartic proteinase, Mucor pusillus rennin (MPP), since MPP is efficiently secreted from recombinant S. cerevisiae containing the MPP gene. When these three fusion genes were expressed under the control of the GAL7 promoter, only one, encoding the mature rApoE connected to the whole MPP sequence, directed efficient secretion of the fused protein. The maximum yield of the fused protein secreted into the medium reached 11.8 mg/l and the calculated rApoE part was 5.3 mg in the fused protein. The excreted fusion protein was glycosylated at the original two sites in the MPP part. The fused protein was gradually degraded in the medium probably by proteases of the host cell, because no such degradation occured in a yeast pep4mutant strain.  相似文献   

3.
Elevated levels of B cell-activating factor of the TNF family (BlyS) have been implicated in the pathogenesis of autoimmune diseases in human. Removal of pathogenic B lymphocytes by decoy receptors has demonstrated clinical benefit in both oncological and immunological diseases. In this report, we have constructed vectors for the convenient and rapid expression of the extracellular domain of BR3(sBR3) fused to the Fc fragment (hinge, CH2, CH3) of human IgG1 in the methylotrophic yeast, Pichia pastoris. SDS-PAGE assays of culture broth from a methanol-induced expression strain demonstrated that the recombinant sBR3-Fc fusion protein is secreted and recovered from the culture medium as a disulfide-linked, glycosylated homodimer. The recombinant protein was purified to >95% using protein A affinity chromatography and size exclusion chromatography steps. Bioactivity of the recombinant sBR3-Fc was confirmed by the ability of the protein to inhibit mouse B lymphocyte proliferation induced by BLyS in vitro. Our results suggest that the P. pastoris expression system can be used to produce large quantities of fully functional sBR3-Fc fusion protein for both research and industrial purposes.  相似文献   

4.
Jo JH  Im EM  Kim SH  Lee HH 《Biotechnology letters》2011,33(6):1113-1120
A cell surface display system was developed in Pichia pastoris using the gene TIP1, encoding the glycosylphosphatidylinositol (GPI)-anchored protein of Saccharomyces cerevisiae (ScTIP). Human lactoferrin cDNA (hLf) was fused to a full-length TIP1 DNA (ScTIP 630 ) or a short-TIP1 fragment (ScTIP 120 ) encoding the 40 C-terminal amino acids of ScTIP. Both hLf-ScTIP fusion genes were expressed in P. pastoris SMD 1168. The fused protein was detected by western blotting after extraction of the lysed recombinant cells with Triton X-100, urea, and Triton X-100 plus urea, suggesting that the hLf is associated with the membrane. The localization of surface-displayed hLf was confirmed by immunofluorescence confocal microscopy and flow cytometric analysis using FITC-labeled anti-hLf antibody, suggesting that hLf was successfully located at the surface of P. pastoris. The intact recombinant cells and cell lysates showed antibacterial activity against target microorganisms, meaning that the expressed hLf was biologically active. The results indicated that the ScTIP anchoring motif is useful for cell surface display of foreign proteins in P. pastoris.  相似文献   

5.
As the first step for production of human apolipoprotein E (hApoE) in Saccharomyces cerevisiae, the hApoE cDNA was cloned in Escherichia coli, on the basis of the nucleotide sequence reported previously. When the hApoE cDNA including its pre-sequence-encoding region was expressed under the control of the GAL7 promoter, no protein immunoreactive with anti-hApoE antibody was detected either in the culture medium or inside the cells. For efficient production and secretion of hApoE in S. cerevisiae, the mature hApoE-encoding region was fused to the prepro-sequence region of Rhizomucor rennin (MPR) and to the whole MPR gene including its prepro- and mature-MPR regions. When the fusion gene consisting of the prepro-sequence-encoding region and hApoE regions was expressed in S. cerevisiae, no protein reactive with the anti-hApoE antibody was detected in any fraction of the yeast cells, probably due to rapid degradation of the hApoE protein by yeast proteases. On the othe hand, when hApoE was expressed as a fusion to the whole MPR protein, a considerable amount of the fused protein was secreted into the medium. The preprosequence of MPR was correctly processed from the fused protein in the medium by autocatalytic activity of MPR and by a protease(s) of the host cell. Integration of the fusion gene into the chromosome at a copy number of eight led to secretion of the fused protein in a larger amount than the case when the fusion gene was carried on a 2-µm plasmid with its copy number of a few hundreds, because the 2-µm derived plasmid containing the fusion gene was very unstable in the yeast cells. The secretion level was also improved by changing g the culture conditions. A maximum yield of hApoE part in the secreted fused protein was estimated to be 23.7 mg per liter and the amount of the fused protein was calculated to be 53.0 mg per liter.  相似文献   

6.
African swine fever virus(ASFV) infects domestic pigs and European wild boars with strong, hemorrhagic and high mortality. The primary cellular targets of ASFV is the porcine macrophages. Up to now, no commercial vaccine or effective treatment available to control the disease. In this study, three recombinant Saccharomyces cerevisiae(S. cerevisiae) strains expressing fused ASFV proteins-porcine Ig heavy chains were constructed and the immunogenicity of the S. cerevisiae-vectored cocktail ASFV feeding vaccine was further evaluated. To be specific, the P30-Fcc and P54-Fca fusion proteins displaying on surface of S. cerevisiae cells were produced by fusing the Fc fragment of porcine immunoglobulin Ig G1 or IgA1 with p30 or p54 gene of ASFV respectively. The recombinant P30-Fcc and P54-Fca fusion proteins expressed by S. cerevisiae were verified by Western blotting, flow cytometry and immunofluorescence assay.Porcine immunoglobulin Fc fragment fused P30/P54 proteins elicited P30/P54-specific antibody production and induced higher mucosal immunity in swine. The absorption and phagocytosis of recombinant S. cerevisiae strains in IPEC-J2 cells or porcine alveolar macrophage(PAM) cells were significantly enhanced, too. Here, we introduce a kind of cheap and safe oral S. cerevisiae-vectored vaccine, which could activate the specific mucosal immunity for controlling ASFV infection.  相似文献   

7.
Summary Sequences encoding GST-fusion proteins were cloned into the Saccharomyces cerevisiae secretion vector, pYEX-S1, to direct secretion into the culture medium. GST and metallothionein fused to GST were secreted successfully and the fusion proteins purified. With several other GST-fusion proteins however, the proteins were retained inside the cell, indicating limitations to the types of proteins that can be secreted from yeast.  相似文献   

8.

Background

Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs) represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY), the main virulence factor of Gardnerella vaginalis.

Results

The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs) that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody.

Conclusions

Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the scFv-Fc molecules on the surface of pseudotype VLPs was successful and allowed generation of multivalent scFv-Fc proteins with high VLY-neutralizing potency. Our study demonstrated for the first time that large recombinant antibody molecule fused with hamster polyomavirus VP2 protein and co-expressed with VP1 protein in the form of pseudotype VLPs was properly folded and exhibited strong antigen-binding activity. The current study broadens the potential of recombinant VLPs as a highly efficient carrier for functionally active complex proteins.  相似文献   

9.
Two alternative cell-surface display systems were developed in Pichia pastoris using the α-agglutinin and Flo1p (FS) anchor systems, respectively. Both the anchor cell wall proteins were obtained originally from Saccharomyces cerevisiae. Candida antarctica lipase B (CALB) was displayed functionally on the cell surface of P. pastoris using the anchor proteins α-agglutinin and FS. The activity of CALB displayed on P. pastoris was tenfold higher than that of S. cerevisiae. The hydrolytic and synthetic activities of CALB fused with α-agglutinin and FS anchored on P. pastoris were investigated. The hydrolytic activities of both lipases displayed on yeast cells surface were more than 200 U/g dry cell after 120 h of culture (200 and 270 U/g dry cell, respectively). However, the synthetic activity of CALB fused with α-agglutinin on P. pastoris was threefold higher than that of the FS fusion protein when applied to the synthesis of ethyl caproate. Similarly, the CALB displayed on P. pastoris using α-agglutinin had a higher catalytic efficiency with respect to the synthesis of other short-chain flavor esters than that displayed using the FS anchor. Interestingly, for some short-chain esters, the synthetic activity of displaying CALB fused with α-agglutinin on P. pastoris was even higher than that of the commercial CALB Novozyme 435.  相似文献   

10.
An E. coli vector system was constructed which allows the expression of fusion genes via a l-rhamnose-inducible promotor. The corresponding fusion proteins consist of the maltose-binding protein and a His-tag sequence for affinity purification, the Saccharomyces cerevisiae Smt3 protein for protein processing by proteolytic cleavage and the protein of interest. The Smt3 gene was codon-optimized for expression in E. coli. In a second rhamnose-inducible vector, the S. cerevisiae Ulp1 protease gene for processing Smt3 fusion proteins was fused in the same way to maltose-binding protein and His-tag sequence but without the Smt3 gene. The enhanced green fluorescent protein (eGFP) was used as reporter and protein of interest. Both fusion proteins (MalE-6xHis-Smt3-eGFP and MalE-6xHis-Ulp1) were efficiently produced in E. coli and separately purified by amylose resin. After proteolytic cleavage the products were applied to a Ni-NTA column to remove protease and tags. Pure eGFP protein was obtained in the flow-through of the column in a yield of around 35% of the crude cell extract.  相似文献   

11.
Fc 融合蛋白是指利用基因工程等技术将某种具有生物活性的功能蛋白分子与Fc 片段融合而产生的新型重组蛋白,其不仅保留了功能蛋白分子的生物学活性,还具有一些抗体的性质,如通过结合相关Fc 受体延长半衰期和引发抗体依赖细胞介导的细胞毒性效应等。对Fc融合蛋白及其在药学领域的研究进展进行了综述。  相似文献   

12.
The food-grade Lactococcus lactis is a potential vector to be used as a live vehicle for the delivery of heterologous proteins for vaccine and pharmaceutical purposes. We constructed a plasmid vector pSVac that harbors a 255-bp single-repeat sequence of the cell wall-binding protein region of the AcmA protein. The recombinant plasmid was transformed into Escherichia coli and expression of the gene fragment was driven by the T7 promoter of the plasmid. SDS-PAGE showed the presence of the putative AcmA fragment and this was confirmed by Western blot analysis. The protein was isolated and purified using a His-tag affinity column. When mixed with a culture of L. lactis MG1363, ELISA and immunofluorescence assays showed that the cell wall-binding fragment was anchored onto the outer surface of the bacteria. This indicated that the AcmA repeat unit retained the active site for binding onto the cell wall surface of the L. lactis cells. Stability assays showed that the fusion proteins (AcmA/A1, AcmA/A3) were stably docked onto the surface for at least 5 days. The AcmA fragment was also shown to be able to strongly bind onto the cell surface of naturally occurring lactococcal strains and Lactobacillus and, with less strength, the cell surface of Bacillus sphericus. The new system designed for cell surface display of recombinant proteins on L. lactis was evaluated for the expression and display of A1 and A3 regions of the VP1 protein of enterovirus 71 (EV71). The A1 and A3 regions of the VP1 protein of EV71 were cloned upstream to the cell wall-binding domains of AcmA protein and successfully expressed as AcmA/A1 and AcmA/A3. Whole-cell ELISA showed the successful display of VP1 protein epitopes of EV71 on the surface of L. lactis. The success of the anchoring system developed in this study for docking the A1 and A3 epitopes of VP1 onto the surface of L. lactis cells opens up the possibilities of peptide and protein display for not only Lactococcus but also for other gram-positive bacteria. This novel way of displaying epitopes on the cell surface of L. lactis and other related organisms should be very useful in the delivery of vaccines and other useful proteins.  相似文献   

13.
A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein.  相似文献   

14.
Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.  相似文献   

15.
One challenge in biotechnology industry is to produce recombinant proteins with prolonged serum half-life. One strategy for enhancing the serum half-life of proteins includes increasing the molecular weight of the protein of interest by fusion to the Fc part of an antibody. In this context, we have expressed a homodimer fusion protein in CHO cells which consists of two identical polypeptide chains, in which our target protein, recombinant human erythropoietin (rhEpo), is N-terminally linked with the Fc part of a human IgG1 molecule. In the present study, culture supernatant of a stable clone was collected and purified by affinity chromatography prior characterization. We emphasized product quality aspects regarding the fusion protein itself and in addition, post-translational characterization of the subunits in comparison to human antibodies and rhEpo. However, overproduction of recombinant proteins in mammalian cells is well established, analysis of product quality of complex products for different purposes, such as product specification, purification issues, batch to batch consistency and therapeutical consequences, is required. Besides product quantification by ELISA, N-acetylneuraminic acid quantification in microtiterplates, quantitative isoform pattern and entire glycan profiling was performed. By using these techniques for the characterization of the recombinant human Epo-Fc (rhEpo-Fc) molecule itself and furthermore, for the separate characterization of both subunits, we could clearly show that no significant differences in the core glycan structures compared to rhEpo and human antibody N-glycans were found. The direct comparison with other rhEpo-Fc fusion proteins failed, because no appropriate data were found in the literature.  相似文献   

16.
The construction of a whole-cell biocatalyst with its sequential reaction has been performed by the genetic immobilization of two amylolytic enzymes on the yeast cell surface. A recombinant strain of Saccharomyces cerevisiae that displays glucoamylase and α-amylase on its cell surface was constructed and its starch-utilizing ability was evaluated. The gene encoding Rhizopus oryzae glucoamylase, with its own secretion signal peptide, and a truncated fragment of the α-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast α factor, respectively, were fused with the gene encoding the C-terminal half of the yeast α-agglutinin. The constructed fusion genes were introduced into the different loci of chromosomes of S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The glucoamylase and α-amylase activities were not detected in the culture medium, but in the cell pellet fraction. The transformant strain co-displaying glucoamylase and α-amylase could grow faster on starch as the sole carbon source than the transformant strain displaying only glucoamylase. Received: 16 June 1998 / Received last revision: 21 August 1998 / Accepted: 3 September 1998  相似文献   

17.
Wang Q  Li L  Chen M  Qi Q  Wang PG 《Current microbiology》2008,56(4):352-357
A novel system based on Pir1 from Saccharomyces cerevisiae was developed for cell-surface display of heterologous proteins in Pichia pastoris with the alpha-factor secretion signal sequence. As a model protein, enhanced green fluorescence protein (EGFP) was fused to the N-terminal of the mature peptide of Pir1 (Pir1-a). The expression of fusion protein EGFP-Pir1-a was irregular throughout the P. pastoris cell surface per detection by confocal laser scanning microscopy. A truncated sequence containing only the internal repetitive sequences of Pir1-a (Pir1-b) was used as a new anchor protein in further study. The fusion protein EGFP-Pir1-b was expressed uniformly on the cell surface. The fluorescence intensity of the whole yeast was measured by spectrofluorometer. Western blot confirmed that the fusion proteins were released from cell walls after mild alkaline treatment. The results indicate that a Pir1-based system can express proteins on the surface of P. pastoris and that the fusion proteins do not affect the manner in which Pir1 attaches to the cell wall. The repetitive sequences of Pir1 are required for cell wall retention, and the C-terminal sequence contributes to the irregular distribution of fusion proteins in P. pastoris.  相似文献   

18.
The demand for recombinant proteins for medical and industrial use is expanding rapidly and plants are now recognized as an efficient, inexpensive means of production. Although the accumulation of recombinant proteins in transgenic plants can be low, we have previously demonstrated that fusions with an elastin‐like polypeptide (ELP) tag can significantly enhance the production yield of a range of different recombinant proteins in plant leaves. ELPs are biopolymers with a repeating pentapeptide sequence (VGVPG)n that are valuable for bioseparation, acting as thermally responsive tags for the non‐chromatographic purification of recombinant proteins. To determine the optimal ELP size for the accumulation of recombinant proteins and their subsequent purification, various ELP tags were fused to green fluorescent protein, interleukin‐10, erythropoietin and a single chain antibody fragment and then transiently expressed in tobacco leaves. Our results indicated that ELP tags with 30 pentapeptide repeats provided the best compromise between the positive effects of small ELP tags (n = 5–40) on recombinant protein accumulation and the beneficial effects of larger ELP tags (n = 80–160) on recombinant protein recovery during inverse transition cycling (ITC) purification. In addition, the C‐terminal orientation of ELP fusion tags produced higher levels of target proteins, relative to N‐terminal ELP fusions. Importantly, the ELP tags had no adverse effect on the receptor binding affinity of erythropoietin, demonstrating the inert nature of these tags. The use of ELP fusion tags provides an approach for enhancing the production of recombinant proteins in plants, while simultaneously assisting in their purification. Biotechnol. Bioeng. 2009;103: 562–573. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
The S-layer protein CTC surface display system of Bacillus thuringiensis was used to test the possibility of displaying avian influenza virus nucleoprotein (NP) on the cell surface of B. thuringiensis. By fusing np with the anchoring motif of ctc, four recombinant plasmids were constructed. They harbored fusion gene ctc-np, csa-ctc-np (csa representing csaAB operon, very important in anchoring S-layer protein on cell surface), ctc-npp (npp representing the part fragment of np), and csa-ctc-npp, respectively. Five recombinant strains were obtained by transferring recombinant plasmids to B. thuringiensis plasmid-free derivative strain BMB171. The vegetative cells of five strains were used as agglutinogens for slide agglutination assays. The assays showed recombinant NP proteins successfully displayed on the cell surface of five strains. After immunization of chickens with spores by oral route, all five strains elicited a humoral response to NP and exhibited immunogenicity as indicated by enzyme-linked immunosorbent assay (ELISA). ELISA also showed that one of five strains, CN (bearing csa-ctc-npp), exhibited the highest immunogenicity among five strains, which suggested that the best way of constructing ctc fusion gene was the csa-ctc-npp. The strategy developed in this study suggests the possibility of generating a heat-stable and oral veterinary vaccine with B. thuringiensis surface display system.  相似文献   

20.
The technology of the yeast cell surface display, which appeared 20 years ago and was based on the displaying of target proteins on the cell surface via fusion to an abundant cell wall protein finds broad application in basic and applied research. The main advantage of the cell surface display on the basis of eukaryotic microorganisms—yeast—is the opportunity for correct modification of mammalian proteins. The cell surface display is an important tool for the analysis and understanding of protein function and protein–protein interactions and for the screening of novel clones from peptide and protein libraries. This technology makes it possible to obtain cells with novel abilities, such as catalytic functions and affinity binding to valuable ligands, including rare and heavy metals. It provides the chance to use yeast in biotechnology and in bioremediation and biomonitoring of the environment. The review considers the methods of obtaining a cell surface display on the basis of the yeasts Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica, the properties of anchor proteins, and the main fields of yeast display technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号