首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本研究旨在探讨利用模拟微重力效应研究微重力对果蝇运动及睡眠影响的可行性.通过研制能够在模拟微重力环境下实时监测果蝇行为的随机定位仪,监测短时间(3 d)模拟微重力处理过程中,及长时间(10 d、20 d、30 d)处理后雄蝇运动和睡眠的变化;选取受影响较显著的短时间处理组,研究模拟微重力效应对生物钟核心基因(period (per)、timeless(tim)、clock (clk)、cycle (cyc)、cryptochrome (cry))、神经递质多巴胺(dopamine,DA)和5-羟色胺(5-hydroxytryptamine,5-HT)关键合成酶(多巴脱羧酶、酪氨酸羟化酶、色氨酸羟化酶)的编码基因ddc、pale和trh表达水平及DA和5-HT含量的影响.结果显示:短时间暴露下,雄蝇夜晚的运动量增加、单位时间运动次数增加、睡眠时间和次数减少、生物钟基因tim、clk、cyc、cry及神经递质合成相关编码基因ddc、pale和trh的表达水平均显著上升;长时间处理后对雄蝇运动和睡眠的影响较小.本研究认为利用模拟微重力效应研究微重力对果蝇运动及睡眠的影响是可行的,相关研究结果对航天医学研究具有借鉴意义.  相似文献   

2.
虫酰肼模拟昆虫蜕皮激素的作用干扰新表皮的形成.为了探讨虫酰肼对昆虫新表皮形成的影响是否与抑制表皮形成相关酶的活性有关,本研究应用高效液相色谱-荧光检测法(HPLC-RP),测定了甜菜夜蛾Spodoptera exigua5龄幼虫用虫酰肼处理不同时间(24,48和72 h)后多巴脱羧酶和酪氨酸羟化酶的活性.结果表明:用LCu( 28.41 μmol/L)和LC33 (85.23 μmol/L)两个亚致死剂量的虫酰肼处理5龄幼虫后,多巴脱羧酶和酪氨酸羟化酶的活性均受到明显抑制,高浓度的抑制作用大于低浓度的抑制作用.随着处理时间的延长,同一剂量的抑制作用逐渐增强.进一步测定虫酰肼处理24,48和72 h后5龄幼虫血淋巴、脂肪体、中肠、表皮和头部的多巴脱羧酶和酪氨酸羟化酶的活性,可看出虫酰肼对幼虫不同组织的多巴脱羧酶和酪氨酸羟化酶的活性也具有相似的抑制作用.结果提示,虫酰肼对甜菜夜蛾幼虫多巴脱羧酶和酪氨酸羟化酶活性具有明显抑制作用,幼虫新表皮形成受阻可能与虫酰肼抑制多巴脱羧酶和酪氨酸羟化酶的活性有关.  相似文献   

3.
虫酰肼对甜菜夜蛾多巴脱羧酶和酪氨酸羟化酶的抑制作用   总被引:2,自引:0,他引:2  
虫酰肼模拟昆虫蜕皮激素的作用干扰新表皮的形成。为了探讨虫酰肼对昆虫新表皮形成的影响是否与抑制表皮形成相关酶的活性有关, 本研究应用高效液相色谱-荧光检测法(HPLC-RP), 测定了甜菜夜蛾Spodoptera exigua 5龄幼虫用虫酰肼处理不同时间(24, 48和72 h)后多巴脱羧酶和酪氨酸羟化酶的活性。结果表明: 用LC11 (28.41 μmol/L)和LC33 (85.23 μmol/L)两个亚致死剂量的虫酰肼处理5龄幼虫后, 多巴脱羧酶和酪氨酸羟化酶的活性均受到明显抑制, 高浓度的抑制作用大于低浓度的抑制作用。随着处理时间的延长, 同一剂量的抑制作用逐渐增强。进一步测定虫酰肼处理24, 48和72 h后5龄幼虫血淋巴、 脂肪体、 中肠、 表皮和头部的多巴脱羧酶和酪氨酸羟化酶的活性, 可看出虫酰肼对幼虫不同组织的多巴脱羧酶和酪氨酸羟化酶的活性也具有相似的抑制作用。结果提示, 虫酰肼对甜菜夜蛾幼虫多巴脱羧酶和酪氨酸羟化酶活性具有明显抑制作用, 幼虫新表皮形成受阻可能与虫酰肼抑制多巴脱羧酶和酪氨酸羟化酶的活性有关。  相似文献   

4.
生姜精油对黑腹果蝇的急性毒性分析   总被引:1,自引:0,他引:1  
在蔗糖水溶液中加入不同浓度的生姜精油饲喂野生型黑腹果蝇成虫,用时间-剂量-死亡率模型对96h内各处理果蝇成虫累计死亡率随时间、剂量的变化进行拟合.结果表明:较高浓度的生姜精油对果蝇成虫具有较强的急性毒性.0.5%生姜精油作用72h,果蝇成虫的累计死亡率分别为雌88%、雄79%;1%和10%生姜精油作用72h,雌雄成虫的累计死亡率均达100%.随着处理时间的延长,达到50%致死水平所需生姜精油浓度(即LC50)逐渐降低.Tween-20对果蝇成虫(尤其是雄虫)也有较强的毒性,高浓度时作用尤为明显.  相似文献   

5.
室内实验云南德膏对樱桃果蝇Drosophila suzukii(Matsumura)成虫寿命的影响。结果显示,在取食含云南德膏(0·3%~5·0%)饲料后,樱桃果蝇成虫平均寿命显著延长,其中雌虫平均寿命延长率在98·61%~128·41%之间,雄虫在77·80%~114·14%之间;与对照相比,雌成虫半数存活天数延长率在104·17%~120·83%之间,雄虫延长率在95·65%~130·43%之间;雌虫平均最长存活天数延长率在90·10%~124·22%之间,雄虫在70·78%~114·14%之间。取食云南德膏纯品后,樱桃果蝇雌虫平均寿命比对照延长93·58%,雄虫延长84·50%;雌虫半数存活天数比对照延长112·50%,雄虫半数存活天数比对照延长108·70%左右。结果表明取食云南德膏可显著延长樱桃果蝇寿命。  相似文献   

6.
多巴胺是多种天然抗氧化药物生物合成的前体物质,在人体内作为神经递质调控中枢神经系统的多种生理功能,常用于多种类型休克的临床治疗。目前,通过微生物合成技术已经实现了多巴胺的从头合成,但是合成效率很低。针对该问题,在左旋多巴 (l-DOPA) 大肠杆菌工程菌基础上,利用不同拷贝数质粒表达野猪Sus scrofa来源的多巴脱羧酶基因Ssddc,实现了葡萄糖到多巴胺的生产。为了进一步提高多巴胺合成效率,从100个候选基因中筛选出5个多巴脱羧酶基因进行测试,其中来源于人Homo sapiens多巴脱羧酶基因Hsddc的工程菌摇瓶发酵的多巴胺产量最高,达到3.33 g/L;而来源于果蝇Drosophila melanogaster多巴脱羧酶基因Dmddc的工程菌摇瓶发酵的左旋多巴残余量最低,仅有0.02 g/L;这两株工程菌分批补料发酵表明,多巴胺的产量可以分别达到13.3 g/L和16.2 g/L,左旋多巴残余量分别是0.45 g/L和0.23 g/L。将多巴脱羧酶基因Dmddc和Ssddc分别整合到基因组上,获得遗传稳定的工程菌,在分批补料发酵条件下,多巴胺产量最高达到17.7 g/L,是目前国内外报道的最高产量。  相似文献   

7.
为了解农药处理导致褐飞虱Nilaparvata lugens (Stål)飞行能力增强的生理机制, 本文采用蒽酮法和酶促反应终止法, 研究了吡虫啉、 三唑磷和溴氰菊酯3种杀虫剂亚致死剂量对褐飞虱3龄、 5龄若虫及长、 短翅型雌雄成虫体内海藻糖含量和海藻糖酶活性的影响。结果表明: 杀虫剂处理的褐飞虱3龄若虫海藻糖含量和海藻糖酶活性与对照相比没有显著差异(P>0.05)。40 mg/L三唑磷处理的褐飞虱5龄若虫体内海藻糖含量显著低于对照(P<0.05), 比对照降低了24%; 而20和40 mg/L三唑磷处理的褐飞虱5龄若虫海藻糖酶活性显著高于对照(P<0.05), 分别比对照高出了100%和129%。10 mg/L吡虫啉, 20 和40 mg/L三唑磷以及3和6 mg/L溴氰菊酯处理的褐飞虱短翅雌成虫和雄成虫体内海藻糖含量显著低于对照(P<0.05), 雌成虫体内海藻糖含量比对照分别降低了36%, 53%, 67%, 58%和69%, 雄成虫体内海藻糖含量比对照分别降低了59%, 71%, 65%, 70%和77%; 而40 mg/L三唑磷以及3和6 mg/L溴氰菊酯处理的褐飞虱短翅型雌成虫和雄成虫体内海藻糖酶活性显著高于对照(P<0.05), 雌成虫体内海藻糖酶活性比对照分别高出了124%, 100%和88%, 雄成虫体内海藻糖酶活性比对照分别高出了146%, 132%和118%。10 mg/L吡虫啉, 40 mg/L三唑磷和3 mg/L溴氰菊酯处理的褐飞虱长翅型雌成虫和雄成虫海藻糖含量显著低于对照(P<0.05), 雌成虫海藻糖含量比对照分别降低了44%, 34%和37%, 雄成虫体内海藻糖含量比对照降低了48%, 54%和43%; 而5和10 mg/L吡虫啉处理的长翅型雌成虫和雄成虫海藻糖酶活性显著高于对照(P<0.05), 雌成虫体内海藻糖酶活性比对照分别高出了317%和300%, 雄成虫体内海藻糖酶活性比对照分别高出了170%和97%。这些结果说明这3种杀虫剂亚致死剂量处理可以增强褐飞虱体内海藻糖酶活性, 并导致海藻糖含量下降。本研究结果对深入阐明农药诱导褐飞虱再猖獗及杀虫剂处理增强其飞行能力的生理机制具有一定的科学价值。  相似文献   

8.
闫琴  王明亮  花蕾  王杰  张宏雨  刘宇虹  白芃  付慧  张俊洁  刘威 《昆虫学报》2019,62(12):1400-1408
【目的】研究黑腹果蝇Drosophila melanogaster对短小乳杆菌Lactobacillus brevis有氧与无氧代谢产物的产卵选择,并解析这些代谢产物影响果蝇产卵行为的机制和生物学意义。【方法】应用产卵双选择装置,检测成年雌果蝇产卵的选择行为;利用黑暗条件(暗盒)、嗅觉突变体和摘除前足味觉感受器的方式探究介导该行为的感觉系统;通过在不同浓度乳酸(0, 70, 280 mmol/L)的培养基上培养黑腹果蝇,探究乳酸对其后代的发育历期和存活率的影响;利用免疫荧光染色法检测乳酸对果蝇肠道上皮细胞增殖情况的影响。【结果】短小乳杆菌无氧代谢产物引起成年雌性黑腹果蝇产卵避性,产卵指数为-0.47;短小乳杆菌有氧代谢产物乳酸含量为0.4 mmol/L,无氧代谢产物乳酸含量为126.8 mmol/L;雌性果蝇对乳酸同样产生产卵避性反应,且产卵避性随乳酸浓度的增高而增强。切除前足的果蝇对乳酸的产卵避性显著降低。与对照相比, 70 mmol/L的乳酸使幼虫的成蛹时间和成虫羽化时间分别延长了1.42 d和1.17 d,存活率降低了36.0%。乳酸明显破坏肠道上皮的完整性,促进肠道上皮细胞的增殖。【结论】短小乳杆菌无氧代谢产物引起成年果蝇产卵避性。果蝇主要通过味觉感知短小乳杆菌无氧代谢产物乳酸,这引起果蝇产卵避性,从而提高后代的生长发育和幼虫的存活率。  相似文献   

9.
采用试验室单管观察记录的方法,对3,4,5日龄野生型黑腹果蝇Drosophila melanogaster Meigenw1118成虫每日活动节律进行研究。试验将果蝇活动划分为强活动(飞行和爬行)、弱活动(梳理、觅食等原地发生的运动)和静息(身体不发生移动的休息)3种类型。强活动和弱活动之和为总运动。研究结果显示,野生型黑腹果蝇w1118的昼夜活动表现为明显的双峰模态,晨峰和晚峰分别处于开、关灯前后;雌、雄果蝇总体活动无差异,关灯(18:30)前后雌蝇活动稍强于雄蝇,开灯(6:30)前后则相反;果蝇强活动的节律与总运动基本一致,而弱活动节律不明显;静息节律为单峰模式,其高峰期位于夜间1:00~5:00;雌蝇的静息活动显著多于雄蝇(P<0·05)。  相似文献   

10.
家蚕酪氨酸羟化酶基因BmTh的表达及功能   总被引:1,自引:1,他引:0  
酪氨酸羟化酶作为儿茶酚胺合成的限速酶, 广泛存在于昆虫、哺乳动物和人类中, 是其新陈代谢不可缺少的酶类。在其他昆虫中, 酪氨酸羟化酶参与了黑色素的合成, 并在昆虫外骨骼的硬化过程中发挥关键作用。为了研究家蚕Bombyx mori酪氨酸羟化酶基因的生理生化功能, 本文对其基因结构、表达特征及功能进行了研究。基于家蚕基因组和基因芯片数据的生物信息学分析表明, BmTh位于家蚕1号染色体上, 含有8个外显子, 编码561个氨基酸。基因芯片数据显示在家蚕5龄第3天的头部和体壁组织中的表达量较高, RT-PCR验证结果与此一致。利用石蜡组织切片材料和RNA探针对BmTh进行表达定位, 原位杂交结果显示在家蚕头部边缘和体壁上有明显的杂交信号。在幼虫发育至熟蚕时注射酪氨酸羟化酶抑制剂3-indole-L-tyrosine (3-IT), 20 mmol/L的浓度对幼虫几乎没有影响, 50 mmol/L的浓度导致幼虫变态不完全和化蛹困难, 100 mmol/L的浓度使幼虫致死且体色变黑。结果提示, BmTh对家蚕变态发育起重要作用, 是家蚕正常发育不可缺少的关键基因。  相似文献   

11.
In the fruit fly Drosophila melanogaster, locomotor activity is sexually dimorphic: female flies constantly modulate their activity pattern whereas males show a steadier, stereotyped walking pace [1]. Here, we mapped the area of the brain controlling this behavioural dimorphism. Adult male Drosophila expressing a dominant feminising transgene in a small cluster of neurons in the pars intercerebralis exhibited a female-like pattern of locomotor activity. Genetic ablation of these neurons prevented the feminisation of the locomotor activity of transgenic males. The results suggest that this cluster of neurons modulates sex-specific activity, but is not involved in initiating fly locomotion. Nor does it control male courtship behaviour, because feminisation of courtship was not correlated with the feminisation of locomotor activity.  相似文献   

12.
The naturally occurring polyamine spermidine (Spd) has recently been shown to promote longevity across species in an autophagy-dependent manner. Here, we demonstrate that Spd improves both survival and locomotor activity of the fruit fly Drosophila melanogaster upon exposure to the superoxide generator and neurotoxic agent paraquat. Although survival to a high paraquat concentration (20 mM) was specifically increased in female flies only, locomotor activity and survival could be rescued in both male and female animals when exposed to lower paraquat levels (5 mM). These effects are dependent on the autophagic machinery, as Spd failed to confer resistance to paraquat-induced toxicity and locomotor impairment in flies deleted for the essential autophagic regulator ATG7 (autophagy-related gene 7). Spd treatment did also protect against mild doses of another oxidative stressor, hydrogen peroxide, but in this case in an autophagy-independent manner. Altogether, this study establishes that the protective effects of Spd can be exerted through different pathways that depending on the oxidative stress scenario do or do not involve autophagy.  相似文献   

13.
The heavy consumption of ethanol can lead to alcohol use disorders (AUDs) which impact patients, their families, and societies. Yet the genetic and physiological factors that predispose humans to AUDs remain unclear. One hypothesis is that alterations in mitochondrial function modulate neuronal sensitivity to ethanol exposure. Using Drosophila genetics we report that inactivation of the mitochondrial outer membrane translocator protein 18kDa (TSPO), also known as the peripheral benzodiazepine receptor, affects ethanol sedation and tolerance in male flies. Knockdown of dTSPO in adult male neurons results in increased sensitivity to ethanol sedation, and this effect requires the dTSPO depletion-mediated increase in reactive oxygen species (ROS) production and inhibition of caspase activity in fly heads. Systemic loss of dTSPO in male flies blocks the development of tolerance to repeated ethanol exposures, an effect that is not seen when dTSPO is only inactivated in neurons. Female flies are naturally more sensitive to ethanol than males, and female fly heads have strikingly lower levels of dTSPO mRNA than males. Hence, mitochondrial TSPO function plays an important role in ethanol sensitivity and tolerance. Since a large array of benzodiazepine analogues have been developed that interact with the peripheral benzodiazepine receptor, the mitochondrial TSPO might provide an important new target for treating AUDs.  相似文献   

14.
In mammals, dopamine 2-like receptors are expressed in distinct pathways within the central nervous system, as well as in peripheral tissues. Selected neuronal D2-like receptors play a critical role in modulating locomotor activity and, as such, represent an important therapeutic target (e.g. in Parkinson's disease). Previous studies have established that proteins required for dopamine (DA) neurotransmission are highly conserved between mammals and the fruit fly Drosophila melanogaster. These include a fly dopamine 2-like receptor (DD2R; Hearn et al. PNAS 2002 99(22):14554) that has structural and pharmacologic similarity to the human D2-like (D2R). In the current study, we define the spatial expression pattern of DD2R, and functionally characterize flies with reduced DD2 receptor levels. We show that DD2R is expressed in the larval and adult nervous systems, in cell groups that include the Ap-let cohort of peptidergic neurons, as well as in peripheral tissues including the gut and Malpighian tubules. To examine DD2R function in vivo, we generated RNA-interference (RNAi) flies with reduced DD2R expression. Behavioral analysis revealed that these flies show significantly decreased locomotor activity, similar to the phenotype observed in mammals with reduced D2R expression. The fly RNAi phenotype can be rescued by administration of the DD2R synthetic agonist bromocriptine, indicating specificity for the RNAi effect. These results suggest Drosophila as a useful system for future studies aimed at identifying modifiers of dopaminergic signaling/locomotor function.  相似文献   

15.
Abstract. The effect of sugar feeding on the survival of adult phorid fly Pseudacteon tricuspis is investigated. Flies fed 25% sucrose in aqueous solution continuously throughout their lifespan have greater longevity (mean ± SE longevity: female = 7.9 ± 0.8 days, male = 8.9 ± 0.9 days) than completely starved (provided no water and no sugar solution) flies, sugar-starved (provided water only) flies, or flies fed sugar solution only on their first day of adult life. Completely starved flies rarely lived beyond one day. Provision of water increases longevity by 2 days, and one full day of sugar feeding further increases longevity by an additional 1–2 days. Flies fed 50% sucrose have similar survivorship as those fed 25% sucrose. The temporal patterns of nutrient accumulation and utilization are also compared in P. tricuspis fed different diets: sugar-starved, sucrose-fed on the first day of adult life only, and sucrose-fed continuously. Adult P. tricuspis emerge with no gut sugars, and only minimal amounts of body sugars and glycogen. Although the levels of body sugars and glycogen decline gradually in sugar-starved flies, a single day of sugar feeding results in the accumulation of maximum amounts of gut sugars, body sugars and glycogen. High levels of these nutrients are maintained in female and male phorid flies fed on sucrose continuously over the observation period, whereas nutrient levels decline in flies fed only on the first day of life, beginning 1 day postfeeding. Female and male P. tricuspis emerge with an estimated 12.3 ± 2.3 and 7.2 ± 1 g of lipid reserves per fly, respectively. These teneral amounts represent the highest lipid levels detected in adult flies, irrespective of their diet, and are maintained over the life times of sucrose-fed female and male flies, but declined steadily in sugar-starved females. These data suggest that adult P. tricuspis are capable of converting dietary sucrose to body sugars and glycogen, but not lipids.  相似文献   

16.
17.
Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.  相似文献   

18.
Dosage Compensation of the Period Gene in Drosophila Melanogaster   总被引:1,自引:1,他引:0       下载免费PDF全文
The period (per) gene is located on the X chromosome of Drosophila melanogaster. Its expression influences biological clocks in this fruit fly, including the one that subserves circadian rhythms of locomotor activity. Like most X-linked genes in Drosophila, per is under the regulatory control of gene dosage compensation. In this study, we assessed the activity of altered or augmented per(+) DNA fragments in transformants. Relative expression levels in male and female adults were inferred from periodicities associated with locomotor behavioral rhythms, and by histochemically assessing β-galactosidase levels in transgenics carrying different kinds of per-lacZ fusion genes. The results suggest that per contains multipartite regulatory information for dosage compensation within the large first intron and also within the 3' half of this genetic locus.  相似文献   

19.
Insulin signaling pathways are implicated in several physiological processes in invertebrates, including the control of growth and life span; the latter of these has also been correlated with juvenile hormone (JH) deficiency. In turn, JH levels have been correlated with sex-specific differences in locomotor activity. Here, the involvement of the insulin signaling pathway in sex-specific differences in locomotor activity was investigated in Drosophila. Ablation of insulin-producing neurons in the adult pars-intercerebralis was found to increase trehalosemia and to abolish sexual dimorphism relevant to locomotion. Conversely, hyper-insulinemia induced by insulin injection or by over-expression of an insulin-like peptide decreases trehalosemia but does not affect locomotive behavior. Moreover, we also show that in the head of adult flies, the insulin receptor (InR) is expressed only in the fat body surrounding the brain. While both male and female InR mutants are hyper-trehalosemic, they exhibit similar patterns of locomotor activity. Our results indicate that first, insulin controls trehalosemia in adults, and second, like JH, it controls sex-specific differences in the locomotor activity of adult Drosophila in a manner independent of its effect on trehalose metabolism.  相似文献   

20.
We used four replicate outbred populations of Drosophila melanogaster to investigate whether the light regimes experienced during the pre-adult (larval and pupal) and early adult stages influence the free-running period (τDD) of the circadian locomotor activity rhythm of adult flies. In a series of two experiments four different populations of flies were raised from egg to eclosion in constant light (LL), in light/dark (LD) 12:12 h cycle, and in constant darkness (DD). In the first experiment the adult male and female flies were directly transferred into DD and their locomotor activity was monitored, while in the second experiment the locomotor activity of the emerging adult flies was first assayed in LD 12:12 h for 15 days and then in DD for another 15 days. The τDD of the locomotor activity rhythm of flies that were raised in all the three light regimes, LL, LD 12:12 h and in DD was significantly different from each other. The τDD of the locomotor activity rhythm of the flies, which were raised in DD during their pre-adult stages, was significantly shorter than that of flies that were raised as pre-adults in LL regime, which in turn was significantly shorter than that of flies raised in LD 12:12 h regime. This pattern was consistent across both the experiments. The results of our experiments serve to emphasise the fact that in order to draw meaningful inferences about circadian rhythm parameters in insects, adequate attention should be paid to control and specify the environment in which pre-adult rearing takes place. The pattern of pre-adult and early adult light regime effects that we see differs from that previously observed in studies of mutant strains of D. melanogaster, and therefore, also points to the potential importance of inter-strain differences in the response of circadian organisation to external influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号