首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
长江口潮下带春季大型底栖动物的群落结构   总被引:9,自引:0,他引:9  
2005年4月对长江口全区域潮下带共10个采样站位的大型底栖动物进行了调查。调查采获大型底栖动物38种,分属5个生态类型,种类数较少,河口外缘站位种类数多于口内站位。各站位大型底栖动物的平均丰度为32.9个/m2、平均生物量为5.035g/m2(湿重);与20世纪七八十年代相比,平均生物量显著降低;口外缘站位的总丰度和总生物量均高于口内站位。环境因子相关分析表明,盐度是决定长江口大型底栖动物种类分布最重要的环境因子。群落聚类、标序分析显示,春季长江口潮下带大型底栖动物群落结构空间分异明显,完全符合目前长江口支、港、槽“三级分汊”的空间格局。其中,北支的大型底栖动物以混合高盐水种类为主,而南支则以淡水和半咸水种类为主。南支的南北槽分界处内外站位的群落差异也由盐度决定,因为靠近口内的群落均受长江冲淡水影响较大;而口外站位群落则受咸淡水影响。南支的南北港分界点内外的群落差异则主要受长江来水的影响,原因在于处在港分界点以内的群落所在区域,直接受长江来水的冲刷,底质环境极不稳定;而港、槽分界点之间的群落所在区域由于河口上段的诸多明暗沙体的阻挡,水势较为稳定,所以底质环境较稳定,从而使得港、槽分界点之间的群落出现了更多的沙蚕等底质环境类型种类。  相似文献   

2.
对2011—2020年夏季长江口48个站位的大型底栖动物定量监测数据进行统计分析,研究长江口海域底栖生物群落时空结构演变特征。结果表明,近10年长江口海域共鉴定大型底栖动物284种,其中多毛类128种,占总种数的45.1%,甲壳类64种占22.2%,软体动物56种占19.7%,棘皮动物16种占5.6%,其他类合计20种。平均生物密度为(79.5±45.9)个/m2(年份变幅14.7—195个/m2)。平均生物量为(5.20±3.25)g/m2(年份变幅1.01—10.11g/m2),多毛类、软体动物、甲壳类是生物密度和生物量组成的主要类群。十年期间种类数、生物密度和生物量均呈现明显上升趋势,口外区贡献最突出。四个监测区域(南支、北支、杭州湾、口外)的优势种差异大。丝异须虫Heteromastus filiformis在各年份的优势种中出现的频度显著最大。总体来看,长江口监测区域大型底栖动物群落自然演变趋势向好。三项多样性指数统计结果表明,口外区大型底栖动物种类组成多样性水平显著高于口内三个区。生物群...  相似文献   

3.
张敬怀 《生物多样性》2014,22(3):302-1263
利用2006年7-8月(夏季)、2007年4-5月(春季)和2007年10-12月(秋季)珠江丰水期、平水期和枯水期3个航次在南中国海北部珠江口附近海域4条由河口、近岸到深水区调查断面的数据, 研究大型底栖动物多样性由河口-近岸-深水的变化趋势及与环境因子的关系。春季、夏季和秋季分别获得大型底栖动物273、256和148种, 各季节均以环节动物种类最多, 节肢动物次之。大型底栖动物种类数、丰度、生物量和Shannon-Wiener多样性指数均由河口向近岸海域升高, 再由近岸向外海深水区降低。Pielou均匀度深水区最高, 其次为近岸。河口和深水区大型底栖动物k-优势度曲线位于近岸浅水域曲线之上, 表明生物多样性由河口向近岸升高, 而由近岸向深水则降低。大型底栖动物与环境因子Pearson相关性分析表明, 春、秋季大型底栖动物种类数、丰度和生物量与水深呈显著的负相关, 秋季种类多样性指数和均匀度也与水深呈显著的负相关性, 而夏季仅生物量与水深呈显著的负相关; 春、秋季大型底栖动物种类数、生物量、丰度、多样性指数和种类均匀度与盐度的相关性不显著, 但是夏季大型底栖动物种类数、丰度、多样性指数和种类均匀度与盐度呈显著正相关。单位面积(0.2 m2)内, 珠江口及邻近海域大型底栖动物在近岸浅水区较深水区和河口生物多样性高, 且生物量丰富。  相似文献   

4.
长江口及毗邻海域大型底栖动物的空间分布与历史演变   总被引:17,自引:0,他引:17  
刘录三  孟伟  田自强  蔡玉林 《生态学报》2008,28(7):3027-3034
于2005~2006年进行的4个航次调查中,分别对长江口及毗邻海域进行了大型底栖动物取样工作.4个航次共发现大型底栖动物330种,其中包括软体动物122种,多毛类83种,甲壳动物67种,棘皮动物23种,底栖鱼类28种,以及其它类群7种.调查区内大型底栖动物的平均栖息密度为(146.4 ± 22.3)个/m2,平均生物量为(12.8 ± 2.3) g/m2,平均香农指数、丰富度指数与均匀度指数分别为1.72 ± 0.16、1.37 ± 0.19、0.64 ± 0.04.研究表明,调查区内的底栖生物自西向东、由近岸向外海大致可分为3个等级:在最西侧的口内水域与杭州湾,底栖生物种类组成最为单调,生物多样性指数最低,群落结构极为脆弱;在紧邻该底栖生物贫乏带的东侧,也就是口外水域与舟山海区,底栖生物种类组成呈现复杂化,生物多样性指数较高,群落结构显著好于口内水域及杭州湾;在调查海域东南侧的近海区,底栖生物的种类组成最为复杂,生物多样性指数最高,群落结构最为稳定.近半个世纪以来,长江口冲淡水区大型底栖动物的总生物量未出现明显变化,其值在20 g/m2左右变动,但各生态类群的优势地位发生了显著更替.个体较小、生长周期较短的多毛类取代个体较大、生长周期较长的棘皮动物,成为目前冲淡水区最重要的优势类群.  相似文献   

5.
为了研究长江口丰水季邻近海域大型底栖动物群落特征, 我们根据2012年6、8和10月长江口邻近海域大型底栖动物的调查资料, 应用双因素方差分析(Two-Way ANOVA)、聚类分析(Cluster)、非参数多维标度排序(Non-metric Multidimensional Scaling, NMDS)以及丰度生物量比较曲线(Abundance-Biomass Comparison Curves, ABC Curves)对数据资料进行分析。本研究共记录大型底栖动物181种, 其中多毛类动物82种, 甲壳动物46种, 软体动物31种, 棘皮动物11种, 其他类群11种。大型底栖动物丰度、生物量、种类丰富度和多样性指数月份间差异和空间差异均不显著。均匀度指数月份间差异不显著, 而空间上远海显著高于近海。6、8和10月大型底栖动物在20%的相似性水平上划分为3-4个群聚, 不同站位相似性水平较低。ABC曲线表明远海大型底栖动物群落受扰动的程度小于近海。受人类活动的持续影响, 长江口邻近海域大型底栖动物种类变化剧烈, 空间分布不均匀。  相似文献   

6.
滦河中游干流底栖动物种类及分布   总被引:5,自引:0,他引:5  
王琳  甘泓  傅小城  王芳 《生态学杂志》2009,28(4):671-676
2007年10月对华北地区的重要河流——滦河干流中游段的底栖动物进行了调查。结果表明:河流底栖动物种类较为丰富,共采集到底栖动物37种,其中优势种有5种;底栖动物平均生物量为5.4 g·m-2,平均密度为1128 个·m-2;蜉蝣目有1种在各采样点均出现,说明滦河中游干流水质较好;下游段动物多度、生物量及生物多样性指数值都较小,上游段相应均较大,底栖生物分布与具体生境条件密切相关,下游段人为扰动使得生境质量较差,不利于底栖动物生存繁殖。  相似文献   

7.
黄河口潮间带大型底栖动物群落特征   总被引:2,自引:0,他引:2  
2013年2月、5月和8月对黄河入海口附近潮间带的大型底栖动物进行了调查,调查工作涵盖3个季节2条断面的样品,分析了黄河口潮间带大型底栖动物的群落结构特征,包括群落种类组成、丰度和生物量、优势种、多样性,采用CLUSTER聚类分析了大型底栖动物的群落结构,并用AMBI和m-AMBI对底栖群落和环境质量进行了评估。本次调查共鉴定出大型底栖动物52种,其中,多毛纲动物24种,软体动物14种,甲壳动物12种,鱼类1种,纽虫1种。多毛纲动物为该海域底栖群落的主要成分,占据了群落总种数的46.15%。从季节来看,物种数春季最高(38种),夏季则处于最低水平(16种)。群落丰度和生物量均具有明显的季节变化,丰度在春季达到最高,为3 549.33 ind/m2,远高于冬季的256.67 ind/m2和夏季的100.67 ind/m2,其中扁玉螺(Neverita didyma)是丰度的主要贡献者,贡献了全年群落总丰度的75.44%。生物量春季最高,夏季次之,冬季最低。在全年尺度上,甲壳动物的日本大眼蟹(Macrophthalmusjaponicus)是生物量的主要贡献者,占据总生物量的49.86%。群落的季节变化也得到了群落CLUSTER分析与SIMPER分析结果的验证。这与黄河入海口附近底质不稳定,易受侵蚀、环境条件如盐度等具有明显季节差异,以及一定程度的人为扰动密切相关。AMBI和m-AMBI的分析结果显示,该区域环境质量状况较好,仅受到了轻微扰动影响。  相似文献   

8.
为了解互花米草(Spartina alterniflora)入侵红树林的生态影响, 作者对位于北海市西村港的红树林湿地以及周边互花米草盐沼的大型底栖动物群落多样性和群落结构进行了研究。2012年10月至2013年9月连续4次取样, 按照取样时间研究大型底栖动物的种类、物种组成、生物量和生物多样性等群落特征的差异, 探讨互花米草入侵红树林湿地对大型底栖动物的影响。本研究共采集底栖动物16种, 隶属于5门7纲15科, 其中互花米草群落10种, 红树林湿地12种。研究发现互花米草入侵后中国绿螂(Glauconome chinensis)个体数量剧增, 导致不同采样时间互花米草盐沼的大型底栖动物生物量均显著高于红树林湿地; 除个别月份外, 红树林湿地大型底栖动物的Margalef丰富度指数、Shannon-Wiener多样性指数、Simpson多样性指数和Pielou均匀度指数均显著高于互花米草群落。基于生境-采样时间的双因素方差分析结果表明, Shannon-Wiener多样性指数和Simpson指数在两种生境间差异显著; 两种生境的Margalef丰富度和Pielou均匀度指数在不同采样时间差异显著; 大型底栖动物生物量和物种数量在两种生境间和不同采样时间差异均显著。基于多元回归分析的研究结果表明, 互花米草密度是影响大型底栖动物生物量的关键因子, 而互花米草株高可以解释物种个体数量、Shannon-Wiener多样性指数和Simpson指数在两种生境的变化。对不同采样时间大型底栖动物群落结构的非度量多维度(non-metric multidimensional scaling, NMDS)分析结果表明, 红树林与互花米草群落的大型底栖动物群落相似性很低。总而言之, 在西村港地区, 互花米草入侵虽然增加了大型底栖动物的生物量, 但由于优势物种的凸显, 显著降低了大型底栖动物群落的多样性, 且种类组成与群落结构与红树林群落相比已有差异。由此可见, 互花米草入侵红树林对当地的大型底栖动物群落多样性造成影响。  相似文献   

9.
为了解椒江口化工园区及其邻近区域潮间带大型底栖动物分布特征,评价工厂排污对河口潮间带大型底栖动物生态的影响范围及程度,在椒江口共设置6条潮间带采样断面,于2007年10月和2008年1月进行了大型底栖动物野外调查.研究结果如下:(1) 秋冬两季共采集到大型底栖动物75种,其中秋季64种,冬季29种;(2) 物种数呈现河口外断面高于河口内断面的变化趋势;(3) 在各断面软相基质站位,化工园区及其邻近区域的大型底栖动物物种组成差异较大,栖息密度和生物量差异不显著;(4) 与国内其他河口近几年的调查数据相比,椒江口潮间带发现的大型底栖动物种数较高,且存在开敞型河口潮间带大型底栖动物种数大于内湾河口潮间带的现象.  相似文献   

10.
底质环境对浙江衢山岛潮间带大型底栖动物分布的影响   总被引:9,自引:0,他引:9  
于2005年12月对岱山衢山岛的岩礁、泥滩和泥沙滩三种不同底质环境的潮间带生物进行了调查,以了解底质环境对其分布的影响。结果表明,不同底质类型潮间带分布的底栖动物种类数量不同,岩礁分布23种、泥滩分布17种、泥沙滩分布15种。不同底质的底栖动物生物量和栖息密度分布呈显著差异,且均为岩礁断面>泥滩断面>泥沙滩断面。不同底质潮间带底栖动物的多样性指数也不相同,其中Shannon-Weiner指数、Pielou均匀度和Margalef种类丰度的变化为泥滩断面>泥沙滩断面>岩礁断面,而Simpson优势度则表现为泥滩断面<泥沙滩断面<岩礁断面。对三种不同底质类型的潮间带动物分布进行了分析,阐述了底质环境决定着潮间带大型底栖动物种类及数量的分布特征,从而揭示了潮间带底质环境是影响底栖动物分布的重要因素。  相似文献   

11.
为系统了解目前长江中下游干流大型底栖动物群落结构现状, 于2016年5—6月和10—12月对长江干流宜昌-安庆段进行2次调查。共记录大型底栖动物96种, 水生昆虫种类数最多, 占总数的49.0%。大部分物种(58.7%)的出现频率都较低(<1%), 且各江段种类组成差异较大。大型底栖动物密度为(213±58) ind./m2, 生物量为(0.202±0.066) g/m2。大型底栖动物群落结构汛前汛后差异显著, 汛后种类数和现存量均明显下降。与建坝前资料相比, 大型底栖动物群落结构发生较大改变, 种类数增加, 现存量下降。环境分析表明影响大型底栖动物分布的主要因素是流速, 底质和水质的影响不大。大型底栖动物现存量下降与建坝后干流冲刷加剧有关, 针对底栖动物保护, 建议开展水沙调节、营造缓流生境并加强洲滩保护。  相似文献   

12.
2006年4—11月对长江口崇明东滩海三棱藨草(Scirpus mariqueter)带大型底栖动物群落进行了定位调查研究。每月1次采用样方法对大型底栖动物和植被进行同步取样;在鉴定、计数和生物量(干重)测定分析的基础上,进行了多样性测度以及聚类、排序等统计分析。研究结果表明,生长季内海三棱藨草带大型底栖动物的多度和生物量整体呈上升趋势,但是月间存在一定波动变化,9月份多度最高,平均为1 536 ind/m2,10月份生物量(干重)最高,平均为21.60 g/m2;不同月份优势类群组成、多度及生物量特征存在明显差异,瓣鳃类仅在部分时段表现出优势特征。物种数整体呈V字型变化特征,在8月份达到最低值。由于种间个体数量分布的变化滞后于整体物种数的变化,Shannon-Wiener多样性指数、Pielou均匀度指数的峰谷变化滞后于物种数变化,即物种数在5月份达到最低,而多样性及均匀度指数在6月份达到最小值。海三棱藨草带大型底栖动物群落的月间变化特征,在很大程度上是水文(包括水动力条件)以及植被等因素综合作用的结果,但在不同时期主导因子或者不同因子协同作用不同。它们的直接影响是导致底栖动物种类组成、多度变化,进而改变整体生物量和多样性特征。  相似文献   

13.
本文自1991年4月至1993年1月对深圳福田红树林中底栖大型动物的空间分带及灌污的可能影响进行了研究。结果表明,该红树林湿地中主要出现的底栖动物为拟沼螺科,黑螺科,汇螺科,沙蟹科,方蟹科和弹涂鱼科种类。红树区内底栖动物从高潮位到低潮位可分为3个群落分布带:亮泽拟沼螺带;拟黑螺-褶痕相手蟹带;弧边招潮-印尼拟蟹守螺-刻纹拟沼螺带。群落的分带可能主要由潮位线,食物适应性及底质结构因素决定。林前泥滩底栖动物种类多样性最大,生物量最高。林内动物群落则表现出低种类多样性,高种群个体数的特点。群落总栖息密度的变化基本上由软体动物所主导。生活污水排灌对红树林中底栖大型动物的影响不明显,仅在排污口端引起少数污水动物种类的出现及群落总生物量轻微的升高。  相似文献   

14.
2005年对长江口潮滩湿地互花米草(Spartina alterniflora)生长区不同季节大型底栖动物群落特征的研究表明:长江口互花米草生长区的大型底栖动物有21种,其中甲壳纲10种、多毛纲5种、腹足纲5种、辨鳃纲1种。主要种类有拟沼螺(Assiminea sp.)、背蚓虫(Notomastus latericeus)、尖锥拟蟹守螺(Cerithidea largillierli)、中国绿螂(Glauconome chinensis)、钩虾(Gammaridae sp.)等。食性功能群均以碎屑食者和植食者为主。大型底栖动物平均栖息密度为(650.5±719.2)个/m2,标准误主要是由于北湖的拟沼螺密度很大。栖息密度从大到小的顺序为沿河口梯度从内到外分布的北湖边滩、崇明东滩、金山卫边滩。大型底栖动物群落分布不均匀,沿河口梯度变化存在明显的空间差异。栖息密度和物种多样性在夏季最高,冬季最低。大型底栖动物平均生物量为(20.8±6.1)g/m2,季相变化为夏季>秋季>春季>冬季。BIO-ENV分析表明沉积物粒径和盐沼高度是大型底栖动物群落特征的主要影响因素。不同研究结果的差异除了时空因素外可能与互花米草的种群动态有关。加强不同时间尺度的研究有助于正确评价互花米草对大型底栖动物的影响。  相似文献   

15.
为了解三门湾大型底栖动物群落的现状和动态变化,分别于2015年11月、2016年2月、5月和8月在三门湾海域用阿氏拖网对大型底栖动物进行调查。结果表明: 经鉴定,大型底栖动物有119种,主要类群为鱼类、甲壳类和软体动物,占种类总数的79%。大型底栖动物全年优势种为细螯虾、长额超刺糠虾和六丝钝尾虾虎鱼,不同季节优势种的变化明显,种类差异性较大。大型底栖动物的年平均生物量和平均栖息密度分别为0.025 g·m-2和0.07 ind·m-2。三门湾大型底栖动物各季节的Shannon多样性指数为2.21~3.18,Margalef物种丰富度指数为3.25~3.78,Pielou均匀度指数为0.53~0.79。ABC曲线分析显示,在春季和冬季,群落受到中等程度干扰;而在夏季和秋季,群落受到轻微扰动。典范对应分析结果显示,水深、温度、盐度和pH值是影响大型底栖动物群落的最主要环境因子。  相似文献   

16.
长江口北支大型底栖动物群落周年变化特征   总被引:3,自引:0,他引:3  
分析了长江口北支滩涂大型底栖动物的群落结构和多样性变化特征。共采集大型底栖动物78种,包括环节动物7种、软体动物23种、节肢动物28种、脊索动物18种、其它两种,全年优势种有8种。密度为0.08 ind/m^2(1月)-1.24 ind/m^2(7月),生物量为0.006 g/m^2(2月)-0.58 g/m^2(5月),Margalef丰富度指数(D)为0.82(1月)-3.88(7月),Pielou均匀度指数(J)为0.60(9月)-0.86(1月),Shannon-Wiener多样性指数(H')为1.59(2月)-2.76(10月)。底栖动物密度与环境因子进行相关性分析显示,北支潮间带的大型底栖动物群落按照盐度、沉积特征等不同可分为3组,盐度和温度是影响底栖动物群落分布的主导因子。  相似文献   

17.
象山港不同养殖类型海域大型底栖动物群落比较研究   总被引:7,自引:2,他引:5  
于2009年2月在象山港顶部海域分别对海带、牡蛎和鱼类网箱3种不同养殖区进行了大型底栖动物调查。调查共鉴定大型底栖动物73种,隶属8门12纲53科,以软体动物和环节动物为主。海带养殖区优势种有5种;牡蛎养殖区有4种;网箱养殖区有9种。海带、牡蛎和网箱养殖区大型底栖动物平均栖息密度分别为(132±71)个/m2、(94±91)个/m2和(210±132)个/m2;平均生物量分别为(26.51±11.06) g/m2、(53.03±61.94) g/m2和(108.80±73.56) g/m2。栖息密度和生物量不同养殖区和不同调查站位间差异显著。Tukey多重比较结果显示,栖息密度海带养殖区与牡蛎和网箱养殖区间均无显著差异,而牡蛎与鱼类网箱养殖区间存在显著差异;生物量海带养殖区与牡蛎养殖区间无显著差异,海带养殖区和牡蛎养殖区与网箱养殖区间均显著差异。典范对应分析结果表明,对大型底栖动物群落起主要影响的环境因子有温度、盐度、总氮和总磷等,排序轴对物种-环境关系的贡献率计算结果表明环境变量可以较好的解释主要类群的变化情况。丰度/生物量比较曲线(ABC曲线)分析结果表明,网箱养殖区大型底栖动物群落受较明显扰动,而海带和牡蛎养殖区大型底栖动物群落未受扰动。  相似文献   

18.
长江口附近海域大型底栖动物群落特征   总被引:29,自引:0,他引:29  
利用2002年9月在长江口附近海域进行的大型底栖动物定量采集样品,采用物种优势度计算方法和大型多元统计分析软件PRIMER,研究了该海域大型底栖动物群落的优势种组成和物种多样性、生物量和丰度、群落等级聚类分析(CLUSTER)和非度量MDS标序以及群落受污染扰动情况。本次调查共获得长江口附近海域大型底栖动物154种,其中多毛类环节动物60种,甲壳动物30种,软体动物28种,棘皮动物25种,其它类群动物11种。群落中优势种的地位都不明显,只有虫(Listriolobussp.)、豆形短眼蟹(Xenophthalmus pinnotheroidesWhite)、拟单指虫(Cossurella dimorphaHartman)为相对重要的种类。栖息种数、平均生物量和丰度以及3个多样性指数H′、D和J的空间分布无明显的规律,在122°E以东海域呈不连续的斑块或镶嵌状分布。群落结构聚类分析和MDS标序表明,20个取样站的群落结构相似性程度都非常低,为10%-30%,仅有A12和E4两个站Bray-Curtis相似性系数达到50%。ABC曲线表明,近长江口的A4站和A14站的底栖动物群落已有受到一定程度的轻微污染扰动的趋势;而距长江口较远的P9和P5两站ABC曲线状况正常,表明该处的大型底栖动物群落尚未受到干扰。  相似文献   

19.
2005—2006年对广东湛江红树林国家级自然保护区湿地三种红树植物群落(白骨壤+桐化树群落、桐花树群落、木榄+桐花树群落)的大型底栖动物群落特征进行了分析研究。白骨壤+桐化树群落大型底栖动物群落的物种数、栖息密度、生物量、丰富度指数和多样性指数均最高,优势度指数居中,均匀度指数略低于桐花树群落;桐花树群落大型底栖动物物种数急剧减少,尤其是底内型、底上附着型和穴居型种类减少明显,生物量和栖息密度下降到最低,由于个体数种间分配较为均匀而导致优势度指数下降而均匀度指数增高,虽丰富度指数略低于白骨壤+桐化树群落,但多样性指数接近于白骨壤+桐化群落;木榄+桐花树群落,大型底栖动物群落的物种数,尤其是穴居型和底内型种数继续减少,但生物量和栖息密度有所上升,个体数种间分配不均匀而使优势度指数增高而均匀度下降,加上丰富度指数最低,故多样性指数最小。白骨壤+桐化树群落优势种的生活是底内型和穴居型;桐花树和木榄+桐花树群落优势种的生活型均是穴居型。三种红树植物群落中的大型底栖动物群落的GS/GSB分别为0.48、0.63、0.80。相同红树植物群落大型底栖动物群落结构都较为相似,木榄+桐花树群落的相似性最高,而不同红树植物群落大型底栖动物群落特征的差异明显,反映了不同红树群落对底栖动物群落作用的差别,同时也展示了各种大型底栖动物对不同红树群落生境的适应情况。  相似文献   

20.
莱州湾大型底栖动物的次级生产力   总被引:2,自引:0,他引:2  
2011年对莱州湾20个站位进行了4个航次的大型底栖动物调查,共发现177种大型底栖动物,以环节动物、软体动物和节肢动物为主。使用Brey经验公式进行大型底栖动物丰度、生物量、次级生产力和P/B值的计算。结果表明:莱州湾大型底栖动物年均丰度为3057.69 ind·m-2,生物量为3.45 g·m-2(去灰干质量),次级生产力为5.60 g·m-2·a-1(去灰干质量),P/B值为1.59 a-1。相关分析表明,除生物量和丰度之外,叶绿素a含量是影响次级生产力的重要环境因子。群落组成中以个体小、生活史短、代谢快的底栖动物为主。通过估算得出,莱州湾大型底栖动物的次级生产力约为3.48×104t·a-1(去灰干质量),约1.93×105t·a-1(鲜质量)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号