首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
花生种质资源表型性状的综合评价及指标筛选   总被引:4,自引:0,他引:4  
分析花生种质资源表型性状的变异规律,构建花生种质资源的综合评价体系,筛选最优的评价指标。本研究以40份花生种质资源的17个表型性状为研究对象,利用变异系数与Shannon-Weaver指数对表型性状的多样性进行分析,采用聚类分析、主成分分析以及逐步回归分析对花生种质资源进行了综合评价和鉴定指标的筛选。结果表明:17个表型性状的变异系数变化范围为4.15%~31.82%,油酸、亚油酸以及蔗糖含量等性状变异丰富,出仁率、粗脂肪及蛋白质含量等性状较稳定;多样性指数变化范围为1.39~2.06,主茎高、百仁重及蛋白质含量等性状分布比较均匀,油酸、亚油酸及棕榈酸等性状分级及分布较不均匀。聚类分析把40份花生种质资源分为4个类群。主成分分析把17个表型性状归为5个主成分(累计贡献率80.41%,反映出17个表型性状的大部分信息),依次为花生籽粒含油量因子、籽粒含糖量因子及丰产性因子,以上因子可以较准确的评价花生种质。花生种质表型性状的综合评价由F值大小判定,F值均值为0.73,开农176的F值最高,阜花12号的F值最低。由逐步回归分析筛选出8个表型性状:单株鲜果重、百果重、出仁率、粗脂肪、蛋白质含量、棕榈酸、油酸和蔗糖含量。花生种质资源遗传多样性较丰富,综合评价F值可以为花生种质资源评价提供参考,筛选的8个表型性状可以作为花生种质资源性状评价指标。  相似文献   

2.
不同甘蓝型油菜高含油量种质资源的脂肪酸成分分析   总被引:4,自引:0,他引:4  
甘蓝型油菜是我国最为重要的油料作物之一.目前我国面临着植物油严重不足的局面.提高含油量是目前甘蓝型油菜育种的主要方向之一.目前.我国育种工作者已经筛选出了大量含油量超过50%的甘蓝型油菜种质.本文对两种类型的高含油量甘蓝型油菜种质进行了脂肪酸组分分析,结果显示芥酸含量高的种质和芥酸含量低的种质的脂肪酸在菜籽油中变化范围和平均值明显不同.油酸和亚油酸在低芥酸高含油量甘蓝型油菜种质中的含量较高,约占整个油分的80%左右,其他脂肪酸组分则在10%以下;而芥酸则是高芥酸高含油量种质的最主要的成分,约占整个油分的44%左右,油酸、亚油酸等的含量则均在10%左右.相关性分析表明:芥酸和其他脂肪酸之间呈现显著负相关,因此.可以通过降低高芥酸油菜种质中的芥酸含量来提高比如油酸和亚油酸的含量.从而使这些种质的油分更适合人类的健康.  相似文献   

3.
利用代表花生基础资源的核心种质分析花生高油酸资源的分布和遗传多样性,结果表明:在花生核心种质中油酸含量高于57%的种质40份,主要分布在密枝亚种(普通型25份和龙生型8份),少数分布在疏枝亚种(珍珠豆型6份和中间型1份); 除了10份资源来源于国外(ICRISAT 7 份,美国1份,日本1份和韩国1份,其他种质资源来源于中国12个省市。 同时发现高油酸种质中3份资源的含油量在55%左右,分别是Zh.h4094(油酸66.70%,含油量54.99%), Zh.h4029(油酸63.50%,含油量55.58%)和Zh.h4319(油酸59.70%,含油量56.04%; 小区产量超过3000 kg/ha 有10 份种质,前三位分别是Zh.h0883 (4086.06kg/ha), Zh.h1182(3955.00kg/ha)和 Zh.h2910 (3741.00kg/ha)。基于植物学和产量性状分析,前5个主成份(PC)可以解释81.17% 的变异。聚类分析,在域值为0.1942时,可分为6个组。 因此中国花生核心种质中高油酸种质存在丰富的遗传多样性,而且分布较广,高油酸种质的获得对花生高油酸育种提供基础材料。  相似文献   

4.
贵州地方芝麻种质资源品质性状的分析与评价   总被引:1,自引:0,他引:1  
为探究贵州芝麻种质资源的品质特征,并对地方芝麻资源进行初步鉴定与评价,本研究对73份贵州芝麻种质资源的8个品质性状进行测试分析。结果表明:(1)贵州芝麻种质资源含油量介于41.45%~52.12%之间,平均含量为49.69%。在脂肪酸组成中,油酸、亚油酸等不饱和脂肪酸的平均含量分别为35.65%和50.66%;而棕榈酸、硬脂酸等饱和脂肪酸的平均含量仅为8.40%和4.79%。此外,贵州芝麻资源中芝麻素、芝麻林素和木质素的平均含量分别为5.03 mg/g、2.63 mg/g和4.79 mg/g。8个品质性状的变异系数介于3.69%~32.62%范围内,其中芝麻素含量变异系数最大,含油量变异系数最小。而芝麻素含量、芝麻林素含量及硬脂酸含量的变异系数均大于10%,表明这3个性状在芝麻样本间存在较大差异。(2)相关性分析结果显示:含油量与油酸、芝麻素含量呈极显著正相关,与亚油酸含量呈极显著负相关;油酸含量与芝麻素含量呈极显著正相关,与亚油酸含量呈极显负相关;亚油酸含量与芝麻素含量呈极显著负相关。表明品质性状间相关性大、关联程度较高,性状间相互影响较大。(3)主成分分析将8个品质性状综合为3个主成分,分别为油酸因子、含油量因子和芝麻素因子,3个主成分因子包含了贵州芝麻种质资源品质性状的绝大部分信息,累计贡献率达96%以上。(4)在欧氏距离D=9.75处将73份贵州芝麻资源划分为6个类群:第Ⅰ类群包含2份资源、第Ⅱ类群有7份、第Ⅲ类群有12份、第Ⅳ类群有5份、第Ⅴ类群有16份、第Ⅵ类群有31份。其中第Ⅵ类群油酸含量最高,且含油量、芝麻素含量较高。本研究探明了贵州芝麻品质的特征特性,可为芝麻种质资源的利用和创新提供依据,为芝麻品种选育和遗传改良提供参考。  相似文献   

5.
花生抗青枯病种质脂肪酸组成的遗传多样性   总被引:2,自引:0,他引:2  
通过对123份不同类型抗青枯病花生种质种子脂肪酸的鉴定测试,分析了抗青枯病花生种质在这些性状方面的遗传分化,并与6006份资源组成的花生基础收集品进行了比较。研究结果表明,我国抗青枯病花生资源的油酸含量平均为51.78%,显著高于基础收集品的对应值(45.64%);亚油酸含量平均为28.88%,显著低于基础收集品的对应值(34.36%);高油酸种质较多,油酸含量达61%以上的资源23份,所占比重为18.7%,显著高于基础品中的相应比重(2.65%)。标准差、变异系数以及遗传多样性指数的分析结果表明,抗青枯病资源在油酸和亚油酸含量方面的遗传分化程度高。  相似文献   

6.
世界红花种质的籽油脂肪酸组分评价   总被引:5,自引:0,他引:5  
对引自 48个国家和地区在北京栽培的 2 0 48份红花 (CarthamustinctoriusL .)种质资源的籽油脂肪酸分析表明 ,棕榈酸、硬脂酸、油酸和亚油酸的平均含量分别为 7.30 %、1.2 8%、15 .76 %和 75 .33% ,其含量范围分别为 0 .99%~ 2 9.0 3%、0 .0 1%~ 5 .71%、5 .0 0 %~ 81.84%和 11.13%~ 88.30 %。来自不同地区的红花种质 ,各种脂肪酸的含量有较大的差异。来源于孟加拉国的红花 ,亚油酸平均含量为 5 0 .6 8% ,来源于奥地利的红花 ,亚油酸平均含量高达79.0 4%。通过评价 ,分别筛选出 10个高亚油酸和 10个高油酸的品种 ,高油酸的品种中有 3个来自孟加拉国 ,而高亚油酸的品种大多来自中国  相似文献   

7.
随机挑选148份羽衣甘蓝种质资源和高世代材料,分析了成熟种子的含油量、蛋白质、硫苷和7种主要脂肪酸成分的表现特征及其相关性。结果表明:羽衣甘蓝成熟种子平均含油量为29.48%,平均蛋白质含量为45.13%,含油量和蛋白质总量为74.61%。硫苷含量的变幅最大,变异系数为31.72%。7种主要脂肪酸成分中,油酸和芥酸的含量较高,其次为亚油酸,棕榈酸和硬脂酸的含量较低。除硫苷含量和硬脂酸含量外,其余9个性状的表现均呈单峰正态分布。相关性分析表明,大多数性状间都具有显著或极显著的相关性,这与对甘蓝型、白菜型和芥菜型3种类型油菜的研究结果相一致。在羽衣甘蓝中存在一些优异的种质资源,通过筛选可以在油菜优质育种中加以利用。  相似文献   

8.
不同种源山桐子果实脂肪酸组成变异分析   总被引:1,自引:0,他引:1  
以采自11个种源的山桐子为材料,测定其果实脂肪酸的组成及其变异情况,结果表明:山桐子果实中不饱和脂肪酸含量较高,尤以亚油酸含量最高,11个种源的平均值为63.58%,且种源间差异显著,分宜、宜昌种源亚油酸相对含量明显高于其他9个种源;饱和脂肪酸以棕榈酸为主,11个种源山桐子果实棕榈酸差异显著,且以平武种源最高;其余脂肪酸含量均较低,变异幅度较大;种子中棕榈酸和棕榈烯酸含量明显高于果肉,而亚油酸、亚麻酸及硬脂酸含量明显低于果肉,油酸含量相近:果实不饱和脂肪酸含量依次为果肉〉全果〉种子,且变异系数及相对极差均较小,尤以果肉中最小;除硬脂酸外,山桐子果实中其他4种主要脂肪酸组分受海拔等地理环境的影响均较小。  相似文献   

9.
对233份河南省地方花生资源进行了蛋白质含量、含油量、油酸和亚油酸含量的全面测定,并与省外和国外资源的相关性状进行了比较分析。在河南地方品种资源中,蛋白质含量中等,平均含油量和油酸含量相对较高,但缺乏蛋白质含量超过30%或含油量超过56%、油酸含量超过70%的突出材料。河南省目前高油品种选育有明显进展,育成了一批高油花生品种,但育成品种蛋白质含量普遍偏低。提出了充分利用现有地方品种资源,积极采用远缘杂交、诱变、分子标记辅助选择技术及现代基因工程技术创制优良种质,选育优质专用品种的育种策略。  相似文献   

10.
缅甸蟒脂肪酸分析   总被引:1,自引:0,他引:1  
用气相色谱法测定了缅甸蟒油20种脂肪酸,其中不饱和脂肪酸含量达67.5%,多不饱和脂肪酸含量达10.3%.含量较高的脂肪酸有油酸、棕榈酸、亚油酸、棕榈油酸,特有脂肪酸DHA、α-亚麻酸,并且明显不同于其他蟒和蛇的脂肪酸含量.缅甸蟒油具有重要的药用和保健品开发利用价值.  相似文献   

11.
Fatty acid composition and stability of vegetable oils have taken more attention as an essential source of biologically active compounds in a good balanced diet. The purpose of the study was to determine peroxide value, free fatty acids, unsaponifiable matter, total carotenoid content, iodine value and fatty acid composition of sunflower, rapeseed, mustard, peanut and olive oils. Rapeseed and peanut oils had the highest peroxide values, while sunflower oil had the lowest peroxide values. The free fatty acid value of the tested oils varied between 0.43 and 1.36% oleic. The peanut oil had the highest free acid value and the mustard oil had the lowest one. Total carotenoid contents of mustard and rape seed oil were higher than those of the other oils tested. Palmitic acid (C16:0), oleic acid (C18:1) and stearic acid (C18:0) were the common main fatty acid components of the vegetable oils tested. Followed by linoleic acid, the amount of oleic acid was the highest among other fatty acid components. Mustard oil had the highest erucic acid (C22:1) with the amount of 11.38%, indicating that it cannot be used for human consumption. Among the oils investigated, sunflower and mustard oils were more stable than rapeseed, peanut and olive oils.  相似文献   

12.
Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line ‘SunOleic 97R’ × low oleic line ‘NC94022’) and T-population (normal oleic line ‘Tifrunner’ × low oleic line ‘GT-C20’) were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.  相似文献   

13.
Dietary regulation of mammary lipogenesis in lactating rats.   总被引:7,自引:7,他引:0       下载免费PDF全文
The proportion of medium-chain fatty acids (C8:0, C10:0 and C12:0) in rat milk increased significantly between day 4 and day 8 of lactation and for the remainder of lactation these acids comprised 40-50mol% of the total fatty acids. The milk fatty acid composition from day 8 was markedly dependent on the presence of dietary fat and altered to include the major fatty acids of the fats (peanut oil, coconut oil and linseed oil). The distribution of fatty acids made within the gland, however, was independent of dietary lipid and C8:0, C10:0 and C12:0 acids accounted for over 70% of the fatty acids made. The rates of lipogenesis in both the mammary gland and liver determined in vivo after the administration of 3H2O were affected by the presence of dietary lipid. In the mammary gland the rate for rats fed a diet containing peanut oil for 7 days was only one fifth that for rats fed a fat-free diet. Coconut oil also suppressed lipogenesis. Both dietary fats also suppressed lipogenesis in the liver.  相似文献   

14.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

15.
The purpose of this work was to determine whether the changes induced by dietary manipulations in the chemical composition of high-density lipoproteins (HDL) (particularly phospholipid fatty acid composition) modified their capacity to promote [3H]cholesterol efflux from cultured fibroblasts. Plasma HDL were obtained from subjects fed for six successive long periods on diets consisting of one predominant fat: peanut oil, corn oil, olive oil, soybean oil, low erucic acid rapeseed oil or milk fats. The [3H]cholesterol efflux from cells in the presence of plasma HDL was studied by means of normal adult human fibroblasts in culture. The [3H]cholesterol efflux from fibroblasts appeared to be independent of the overall composition of HDL and of the degree of saturation of the HDL phospholipid fatty acids, but it was correlated with the phospholipid fatty acid chain length. The [3H]cholesterol efflux from fibroblasts is highly and positively correlated with the sum of the HDL phospholipid C20, C22, C24 fatty acids, and negatively correlated with the sum of the HDL phospholipid C18 fatty acids.  相似文献   

16.
The newly hatched chick obtains its fatty acids almost completely from the lipids of the egg yolk as these are transferred to the developing embryo during its 21-day period of incubation. Since the diet of the laying hen greatly influences the fatty acid composition of the egg lipids, and presumably also the fatty acid composition of the resulting chick, we tested how quickly and to what extent varying the amount of n-3 fatty acids in the diet of the hen would modulate the level of n-3 fatty acids in the brain and retina of the newly hatched chick. White Leghorn hens were fed commercial or semi-purified diets supplemented with 10% fish oil, linseed oil, soy oil, or safflower oil. Eggs, together with the brain, retina, and serum of newly hatched chicks, were then analyzed for fatty acid composition. The fatty acids of egg yolk responded quickly to the hen's diet with most of the change occurring by 4 weeks. There was a linear relationship between the linolenic acid content of the diets and levels of this fatty acid in egg yolk and chick serum. In chicks from hens fed the fish oil diet, the total n-3 fatty acids, including 22:6(n-3), were elevated twofold in the brain and retina and sevenfold in serum relative to commercial diet controls. The safflower oil diet led to a very low n-3 fatty acid content in egg yolks and only 25% of the control n-3 fatty acid content in the brain and retina of chicks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Increasing oil content and improving the fatty acid composition in the seed oil are important breeding goals for rapeseed (Brassica napus L.). The objective of the study was to investigate a possible relationship between fatty acid composition and oil content in an oilseed rape doubled haploid (DH) population. The DH population was derived from a cross between the German cultivar Sollux and the Chinese cultivar Gaoyou, both having a high erucic acid and a very high oil content. In total, 282 DH lines were evaluated in replicated field experiments in four environments, two each in Germany and in China. Fatty acid composition of the seed oil was analyzed by gas liquid chromatography and oil content was determined by NIRS. Quantitative trait loci (QTL) for fatty acid contents were mapped and their additive main effects were determined by a mixed model approach using the program QTLMapper. For all fatty acids large and highly significant genetic variations among the genotypes were observed. High heritabilities were determined for oil content and for all fatty acids (h 2 = 0.82 to 0.94), except for stearic acid content (h 2= 0.38). Significant correlations were found between the contents of all individual fatty acids and oil content. Closest genetic correlations were found between oil content and the sum of polyunsaturated fatty acids (18:2 + 18:3; r G = −0.46), the sum of monounsaturated fatty acids (18:1 + 20:1 + 22:1; r G = 0.46) and palmitic acid (16:0; r G = −0.34), respectively. Between one and eight QTL for the contents of the different fatty acids were detected. Together, their additive main effects explained between 28% and 65% of the genetic variance for the individual fatty acids. Ten QTL for fatty acid contents mapped within a distance of 0 to 10 cM to QTL for oil content, which were previously identified in this DH population. QTL mapped within this distance to each other are likely to be identical. The results indicate a close interrelationship between fatty acid composition and oil content, which should be considered when breeding for increased oil content or improved oil composition in rapeseed.  相似文献   

18.
杜仲种仁化学成分研究   总被引:4,自引:0,他引:4  
对杜仲种仁中油脂含量、理化性质、脂肪酸组成、蛋白质的氨基酸组成以及粗蛋白、粗纤维、淀粉、灰分等成分进行了分析.杜仲种仁中粗蛋白、粗脂肪和粗纤维含量分别为23.59%、40.63%和13.25%.杜仲油的不饱和脂肪酸含量高达90.6%,其中亚麻酸含量为66%,碘值和皂化值分别为180.5和182.7.种仁中含有18种氨基酸,其中人体必需氨基酸占总氨基酸的32.3%.  相似文献   

19.
三种根系分泌脂肪酸对花生生长和土壤酶活性的影响   总被引:4,自引:0,他引:4  
刘苹  赵海军  仲子文  孙明  庞亚群  马征  万书波 《生态学报》2013,33(11):3332-3339
为了探讨花生连作后土壤中脂肪酸类物质的累积与花生连作障碍间的关系,为花生连作障碍机理的研究提供新的理论依据,以田间土壤为介质,采用盆栽试验的方法研究了花生根系分泌物中3种长链脂肪酸,即:豆蔻酸、软脂酸和硬脂酸的混合物,对花生植株生长、产量和土壤酶活性的影响。结果表明,当土壤中脂肪酸的初始含量较低时(80 mg/kg土),对花生植株的生长和产量有微弱的促进作用(P>0.05),当土壤中脂肪酸的初始含量较高时(160 mg/kg土和240 mg/kg土),显著抑制了花生植株的生长和产量(P<0.05)。叶片叶绿素含量、根系活力、土壤酶(蔗糖酶、脲酶、磷酸酶)活性在低脂肪酸含量处理下升高,在高脂肪酸含量处理下显著降低(P<0.001)。光合产物、根际有效养分的减少和根系养分吸收能力的降低,可能是导致花生植株生长和产量降低的原因之一。花生连作土壤中豆蔻酸、软脂酸和硬脂酸的累积与花生的连作障碍有着密切关系。  相似文献   

20.
The effect of dietary supplementation of old rats (26–33 months) with hydrogenated peanut oil on the activity of mitochondrial enzymes in skeletal muscles has been studied. The activities of NADH-coenzyme Q1 oxidoreductase, cytochrome c oxidase, and citrate synthase were determined spectrophotometrically in muscle homogenates. The activities of respiratory complexes I and IV were shown to significantly decrease with the age compared to the activity of the same enzymes in young animals, while the activity of citrate synthase was virtually unchanged. The fatty acid composition of muscle homogenates of old rats differed from that of young animals by a reduced content of myristic, oleic, linoleic, and α-linolenic acids and enhanced content of dihomo-γ-linolenic, arachidonic, and docosahexaenoic acids. Per oral supple-mentation of the old rats with hydrogenated peanut oil completely restored the activity of complex IV and increased the activity of complex I to 80% of the value observed in muscles of young animals, reducing the content of stearic, dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids relative to that in the groups of old and young rats. The content of oleic and linoleic acids increased relatively to that in the group of the old rats, as well as young animals. The possible mechanisms of the restoration of the activity of the respiratory enzymes under the administration of hydrogenated peanut oil are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号