首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
三羟异黄酮(genistein)是大豆中的一种非营养成分,其结构与黄酮化合物类似,能竞争性地与雌激素受体结合,故称之为植物雌激素(phytoestrogen)。它具有广泛的生物学作用,如抗肿瘤、抗病毒、抗真菌、抗氧化、抗突变、抗高血压、抗增生等,其中genistein抑制肿瘤的血管生成是当前研究的热点之一。肿瘤的血管生成是肿瘤进一步生长转移的基础,该过程受肿瘤细胞和血管内皮细胞分泌的血管生成相关因  相似文献   

2.
雌激素相关受体及其在雌激素信号转导体系中的作用   总被引:3,自引:0,他引:3  
雌激素生理效应的发挥是通过靶细胞雌激素受体介导的;但近年来发现,孤儿受体中的一种枛雌激素相关受体也参与了雌激素信号转导体系,并与雌激素受体传导通路相互交叉、相互影响,在雌激素相关生理和病理过程的发生和调节中也发挥着重要的作用。本文将就雌激素相关受体的组成、结构、功能及其与雌激素相关病理过程间的关系进行综述。  相似文献   

3.
雌激素受体 β(ERβ) 是雌激素受体的另一亚型。众多体内外实验证明,ERβ 与乳腺癌的生长有密切联系。ERβ 低表达会促进乳腺 癌增殖,介导转移,还能抑制乳腺癌细胞的凋亡。临床数据证明,ERβ 在乳腺癌患者的癌旁组织中表达高于癌组织,且与乳腺癌患者的 总生存率相关。ERβ 与雌激素受体 α(ERα)、表皮生长因子受体(EGFR)、孕激素受体(PR)均有密切联系:ERα 和 ERβ mRNA 平 均表达水平比值(ERβ/ERα)升高,对抗癌药物有拮抗作用,反之则有协同作用;ERβ 的表达量受 PR 调节,并能通过 EGFR 及下游信 号通路,抑制上皮-间充质转化。临床乳腺癌样本表明,ERβ 低表达可能与启动子甲基化有关。因此,采用药物调节 ERβ 的表达以及敏感性, 是具有很大临床价值的潜在治疗手段。综述 ERβ 以及 ERβ 与相关受体之间的联系在乳腺癌生长中的作用。  相似文献   

4.
肺癌是主要医学难题之一,尽管分子生物学和药理学技术在进步,肺癌的治疗结果却不尽人意。临床上,炎症与肿瘤密切相关,炎症能够促进肿瘤的形成。从遗传角度讲,这两个过程受到同一个基因座的调控。越来越多的证据表明,神经和免疫两个系统存在交互作用,其中迷走神经起着重要作用。在临床及动物实验中分别观察到:切除迷走神经后肺部的肿瘤发生率增高,转移增加。表明迷走神经具有保护作用,能抑制肿瘤生长。气道感受器是生物感应器,能感受肺部炎症及肿瘤生长过程中的多种介质和细胞因子。这些信号通过迷走神经传递给脑,提供肿瘤生长的信息,随后产生一系列的反应调节炎症的广度和强度以及肿瘤生长速度。肿瘤细胞表达神经递质的受体,能提供底物与神经元直接相互作用。因此,免疫反应的神经调节既可以靶向炎症又可以靶向肿瘤。认识肺部神经如何监控肿瘤的生长并且产生神经免疫相互作用以调节肿瘤的进展及转移,将提高肺癌的治疗水平。  相似文献   

5.
肿瘤转移是一个多阶段、多途径、涉及多基因及其信号通路变化的一系列复杂过程。了解肿瘤转移相关基因的信号传导通路以及对肿瘤转移的作用机制,为寻找抑制肿瘤转移的关键靶点具有重要的意义。Ezrin高表达与肿瘤转移密切相关,它可通过改变肿瘤细胞极性及细胞运动、调节肿瘤细胞间黏附及细胞与细胞外基质黏附、参与肿瘤细胞内信号转导而影响恶性肿瘤转移。Ezrin过度表达可以破坏正常细胞内信号传递网络的平衡,其中主要涉及的为细胞信号转导相关分子(Rho)及受体酪氨酸蛋白激酶等信号传导途径。Ezrin借助于细胞内错综复杂的信号转导网络调控细胞的形态构成、黏附、吞噬、运动、血管形成等一系列的生物学过程,最终实现肿瘤细胞的侵袭和转移。本文就Ezrin蛋白的信号转导通路及其对肿瘤转移作用的研究进展做一综述。  相似文献   

6.
雌激素受体在脑内分布十分广泛,对脑功能具有重要作用。雌激素可以通过膜雌激素受体启动的信号转导通路(非基因组效应)作用于中枢神经系统的很多部位,而窖蛋白(caveolin)可以通过不同方式参与膜雌激素受体介导的脑功能调节。简要综述了脑内膜雌激素受体介导的信号转导通路与窖蛋白相关的研究进展。  相似文献   

7.
脑雌激素研究新进展   总被引:1,自引:0,他引:1  
脑内雌激素的来源包括透过血脑屏障的循环雌激素以及脑局部合成的雌激素。雌激素可以调节脑发育、突触可塑性,以及学习和记忆等脑的高级功能,也能调节胆碱能系统、多巴胺能系统和5-羟色胺能系统等的生理功能。雌激素具有两类受体:一是经典的核受体ER-α和ER-β;二是近年新发现的膜性受体ER-X和G蛋白偶联受体GPR30(G protein-coupled receptor)以及Gαq-ER。核受体介导雌激素的基因型效应即调节特异性靶基因的转录,而膜性受体(包括核受体的膜性成分)介导快速的非基因型效应,但也可通过第二信使系统发挥间接的转录调控功能。由于脑源性雌激素具备神经递质/神经调质的部分功能性特征,因此雌激素仅仅是一种激素还是可以作为神经递质/神经调质的假说引起了研究者的极大兴趣。  相似文献   

8.
脑信号蛋白(semaphorin)是分泌的或膜相关糖蛋白,其通过与相应的受体结合后刺激激酶、调节RhoGTP酶,通过调节R-Ras调控整合素、细胞骨架,从而调控细胞运动。脑信号蛋白信号系统也调节肿瘤细胞的运动,调控肿瘤血管生成,并和肝细胞生长因子HGF/Met相偶联,控制肿瘤的侵袭转移。  相似文献   

9.
封面故事     
在肿瘤进展过程中,肿瘤细胞表面表达的受体会呈现异质性或不均一性,即便同种肿瘤患者,其肿瘤组织表达的受体类型或表达水平也会不一致。另外,一种肿瘤细胞表  相似文献   

10.
脑内雌激素水平下降被认为与女性阿尔茨海默病(AD)相关,女性阿尔茨海默病患者脑中胞浆、细胞核、线粒体中的雌激素受体?茁(estrogen receptor β,ERβ)水平也较正常老年女性低.老年大鼠脑内ERβ水平发生显著下降.敲除ERβ影响小鼠的学习和记忆功能,雌激素或ERβ选择性激动剂能够改善神经元突触相关蛋白表达.在神经元中,ERβ与线粒体共定位,提示定位于线粒体上的ERβ,可能参与线粒体功能的调节,从而影响神经元功能.  相似文献   

11.
《Cancer epidemiology》2014,38(3):291-297
Astrocytic tumors are the most common primary brain tumors. It has been reported that androgen receptor (AR), estrogen receptors alpha (ERα) and beta (ERβ) and their coactivator SRC-1 and SRC-3 are involved in the regulation of the growth and development of many tumors, but their expression profiles and significances in the astrocytic tumors remain largely unknown. In this study, the expression of AR, ERs, and SRCs, and the possible roles of them in astrocytic neoplasm were evaluated and compared to normal brain tissues by nickel-intensified immunohistochemistry with tissue microarrays. The results showed that there were no age- or gender-differences regarding to the levels of these receptors or coactivators in astrocytic or normal brain tissues. In the high-grade astrocytic tissue, the levels of AR, ERs and SRC-3 were significantly decreased when compared to the low-grade astrocytic tissues, but the levels of SRC-1 remain unchanged. Correlation analysis revealed that the levels of AR, ERs and SRC-3 were negatively correlated to tumor differentiation, and the levels of SRC-3 were positively correlated to that of ERα. Furthermore, the decreased levels of SRC-3 were associated with an increase of ERβ in astrocytic tumors when compared to that of normal brain tissues. These above results indicate a combination of decreased expression of ERs, AR and SRC-3 but not SRC-1 may be involved in the tumorigenesis of gliomas, ERα/SRC-3 axis may play central role in the regulation these tumors.  相似文献   

12.
Primitive neuroectodermal tumors (PNETs) are the most common form of pediatric brain tumor. Most often these malignant childhood brain tumors arise from neuroepithelial precursor cells in the cerebellum, and less frequently in the cerebral cortex. Because the normal PNET precursor cells from the cerebrum and cerebellum transiently express high levels of estrogen receptors (ERs), we hypothesized that the PNET cells of the cerebrocortical-derived cell line PFSK1 may also express ERs and would be responsive to estrogen. Results of immunoblot studies using ER-specific antiserum indicate that both ERalpha and ERbeta are expressed in PFSK1 cells. The ability of estrogen to rapidly activate MAPK signaling was tested; low physiological concentrations of E(2) stimulated ERK1/2 phosphorylation and nuclear translocation within 15min of exposure. Exogenously added 17beta-estradiol (E(2)) could not stimulate PFSK1 growth, however E(2) significantly increased PFSK1 cell migration, suggesting that rapid actions of E(2) and ER-mediated processes might contribute to the metastatic phenotype of some PNETs.  相似文献   

13.
SYNOPSIS. The ovarian steroid hormones, estradiol and progesterone,act in the guinea pig brain to regulate the expression of sexualbehavior. In studies of the cellular mechanisms of steroid hormoneaction, we have used an immunocytochemical technique to studythe regulation of these receptors in different neuroanatomicalregions. We have observed that progestin receptor-immunoreactivityin cells in certain neuroanatomical regions are more responsiveto particular steroid hormone treatments than are cells in otherregions. Similarly, we have observed selective regulation ofprogestin receptor-immunoreactivity in neurons identified onthe basis of their neuropeptide content. Finally, in the rostralpart of the ventrolateral hypothalamus, a site involved in hormonalregulation of female sexual behavior, estrogen receptor-immunoreactiveneurons that have dopamine-ß-hydroxylase varicositiesclosely-associated have higher levels of immunostaining forestrogen receptors than neurons without this relationship. Takentogether, these studies demonstrate the possibility of studyingthe microregulation of steroid hormone receptors in subsetsof neurons defined by neuroanatomical location, neuropeptide/neurotransmittercontent, afferent input and projection sites. The ability tostudy interactions among different systems at the cellular levelmay help us to understand more clearly the cellular processesinvolved in hormonal regulation of fundamental neuroendocrineprocesses, including the neuroendocrine regulation of sexualbehavior  相似文献   

14.
Somatostatin (SST) inhibition of hormone hypersecretion from tumors is mediated by somatostatin receptors (SSTRs). SSTRs also play an important role in controlling tumor growth through specific antiproliferative actions. These receptors are well expressed in numerous normal and tumor tissues and are susceptible to regulation by a variety of factors. Estradiol, a potent trophic and mitogenic hormone in its target tissues, is known to modulate the expression of SST and its receptors. Accordingly, in the present study, we determined the effects of tamoxifen, a selective estrogen receptor (ER) modulator (SERM), and estradiol on SSTR1 and SSTR2 expression at the mRNA and protein levels in ER-positive and -negative breast cancer cells. We found that SSTR1 was upregulated by tamoxifen in a dose-dependent manner but no effect was seen with estradiol. In contrast, SSTR2 was upregulated by both tamoxifen and estradiol. Combined treatment caused suppression of SSTR1 below control levels but had no significant effect on SSTR2. Treatment with SSTR1-specific agonist was significantly more effective in suppressing cell proliferation of cells pre-treated with tamoxifen. Taking these data into consideration, we suggest that tamoxifen and estradiol exert variable effects on SSTR1 and SSTR2 mRNA and protein expression and distributional pattern of the receptors. These changes are cell subtype-specific and affect the ability of SSTR agonists to inhibit cell proliferation.  相似文献   

15.
16.
17.
While there are many obstacles to immune destruction of autologous tumors, there is mounting evidence that tumor antigen recognition does occur. Unfortunately, immune recognition rarely controls clinically significant tumors. Even the most effective immune response will fail if tumors fail to express target antigens. Importantly, reduced tumor antigen expression often results from changes in gene regulation rather than irrevocable loss of genetic information. Such perturbations are often reversible by specific compounds or biological mediators, prompting a search for agents with improved antigen-enhancing properties. Some recent findings have suggested that certain conventional chemotherapeutic agents may have beneficial properties for cancer treatment beyond their direct cytotoxicities against tumor cells. Accordingly, we screened an important subset of these agents, topoisomerase inhibitors, for their effects on antigen levels in tumor cells. Our analyses demonstrate upregulation of antigen expression in a variety of melanoma cell lines and gliomas in response to nanomolar levels of certain specific topoisomerase inhibitors. To demonstrate the ability of CD8+ T cells to recognize tumors, we assayed cytokine secretion in T cells transfected with T cell receptors directed against Melan-A/MART-1 antigen. Three days of daunorubicin treatment resulted in enhanced antigen expression by tumor cells, in turn inducing co-cultured antigen-specific T cells to secrete Interleukin-2 and Interferon-γ. These results demonstrate that specific topoisomerase inhibitors can augment melanoma antigen production, suggesting that a combination of chemotherapy and immunotherapy may be of potential value in the treatment of otherwise insensitive cancers.  相似文献   

18.
Brain tumors.     
Recent advances in experimental tumor biology are being applied to critical clinical problems of primary brain tumors. The expression of peripheral benzodiazepine receptors, which are sparse in normal brain, is increased as much as 20-fold in brain tumors. Experimental studies show promise in using labeled ligands to these receptors to identify the outer margins of malignant brain tumors. Whereas positron emission tomography has improved the dynamic understanding of tumors, the labeled selective tumor receptors with positron emitters will enhance the ability to specifically diagnose and greatly aid in the pretreatment planning for tumors. Modulation of these receptors will also affect tumor growth and metabolism. Novel methods to deliver antitumor agents to the brain and new approaches using biologic response modifiers also hold promise to further improve the management of brain tumors.  相似文献   

19.
Recruitment of immune cells to tumors is a complex process crucial for both inflammation-driven tumor progression and specific anti-tumor cytotoxicity. Chemokines control the directed migration of immune cells, and their actions are partly controlled by nonsignaling chemokine decoy receptors. The role of the receptors such as D6, Duffy antigen receptor for chemokines and ChemoCentryx chemokine receptor in immunity to tumors is still unclear. Using real-time PCR, we detected significantly decreased expression of D6 mRNA in colon tumors compared to unaffected mucosa. D6 protein was expressed by lymphatic endothelium and mononuclear cells in the colon lamina propria and detected by immunohistochemistry in two out of six tissue samples containing high D6 mRNA levels, whereas no staining was observed in any tissue samples expressing low mRNA levels. When examining the density of lymphatic vessels in colon tumors, we detected a marked increase in vessels identified by the lymphatic endothelial marker Lyve-1, excluding passive regulation of D6 due to decreased lymphatic vessel density. In parallel, the Treg-recruiting chemokine CCL22, which is sequestered by D6, was threefold increased in tumor tissue. Furthermore, we could show that low D6 expression correlated to more invasive tumors and that tumor location influences D6 expression, which is lower in the more distal parts of the colon. The data support that regulation of D6 by colon tumors results in altered levels of proinflammatory CC chemokines, thereby shaping the local chemokine network to favor tumor survival. This may have implications for the design of future immunotherapy for colon cancer.  相似文献   

20.
The present investigation was undertaken to study if a gender-dependent differential induction of tumor cell apoptosis is responsible for the manifestation of gender dimorphism observed in the growth of a transplantable murine T cell lymphoma, designated as Dalton’s lymphoma (DL). Tumor cell samples obtained from male tumor-bearing mice showed a higher number of cells with apoptotic morphology compared to that observed in female tumor-bearing mice. In this report we demonstrate that male hormone androgen and female hormone estrogen can differentially modulate tumor cell proliferation and apoptosis through alteration in the expression pattern of cell death regulating genes: p53 and CAD. DL cells were shown to express mRNA for androgen and estrogen receptors. Further these gonadal hormones also induced tumor cells to produce tumor growth regulating proteins: VEGF, TGF-β, IL-2, IL-2R, SOCS, Hsp-70 and IFN-γ which in turn either through autocrine action on tumor cells or via TAM-derived NO were observed to regulate tumor cell apoptosis leading to gender dimorphism of tumor growth. This study also discusses the possible mechanism involved. The study has clinical significance as these results will helps in understanding the mechanism of gender dimorphism with respect to the progression of T-cells tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号