首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ubiquitin-Specific Protease 5 Is Required for the Efficient Repair of DNA Double-Strand Breaks
Authors:Satoshi Nakajima  Li Lan  Leizhen Wei  Ching-Lung Hsieh  Vesna Rapi?-Otrin  Akira Yasui  Arthur S Levine
Institution:1. Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.; 2. Division of the Dynamic Proteome, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.; Tulane University Health Sciences Center, United States of America,
Abstract:During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号