首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5758篇
  免费   446篇
  国内免费   2篇
  2023年   15篇
  2021年   53篇
  2020年   50篇
  2019年   51篇
  2018年   79篇
  2017年   70篇
  2016年   116篇
  2015年   185篇
  2014年   259篇
  2013年   342篇
  2012年   348篇
  2011年   386篇
  2010年   261篇
  2009年   252篇
  2008年   342篇
  2007年   366篇
  2006年   341篇
  2005年   346篇
  2004年   305篇
  2003年   287篇
  2002年   303篇
  2001年   72篇
  2000年   61篇
  1999年   82篇
  1998年   106篇
  1997年   81篇
  1996年   71篇
  1995年   59篇
  1994年   63篇
  1993年   67篇
  1992年   49篇
  1991年   56篇
  1990年   40篇
  1989年   60篇
  1988年   45篇
  1987年   32篇
  1986年   43篇
  1985年   33篇
  1984年   30篇
  1983年   24篇
  1982年   52篇
  1981年   33篇
  1980年   33篇
  1979年   22篇
  1978年   16篇
  1977年   23篇
  1976年   16篇
  1975年   21篇
  1974年   15篇
  1972年   13篇
排序方式: 共有6206条查询结果,搜索用时 15 毫秒
1.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
2.
Due to concerns about data quality, McKechnie, Coe, Gerson, and Wolf ( 2016 ) questioned the conclusions of our study (Khaliq et al., 2015 ) published in this journal. Here, we argue that most of the questioned data points are in fact useful for macrophysiological analyses, mostly because the vast majority of data are explicitly reported in the peer‐reviewed physiological literature. Furthermore, we show that our conclusions remain largely robust irrespective of the data inclusion criterion. While we think that constructive debates about the adequate use of primary data in meta‐studies as well as more transparency in data inclusion criteria are indeed useful, we also emphasize that data suitability should be evaluated in the light of the scope and scale of the study in which they are used. We hope that this discussion will not discourage the exchange between disciplines such as biogeography and physiology, as this integration is needed to address some of the most urgent scientific challenges.  相似文献   
3.
4.
5.
This study quantitatively documents the progressive development of sexual dimorphism of the vocal organs along the ontogeny of the goitred gazelle (Gazella subgutturosa). The major, male‐specific secondary sexual features, of vocal anatomy in goitred gazelle are an enlarged larynx and a marked laryngeal descent. These features appear to have evolved by sexual selection and may serve as a model for similar events in male humans. Sexual dimorphism of larynx size and larynx position in adult goitred gazelles is more pronounced than in humans, whereas the vocal anatomy of neonate goitred gazelles does not differ between sexes. This study examines the vocal anatomy of 19 (11 male, 8 female) goitred gazelle specimens across three age‐classes, that is, neonates, subadults and mature adults. The postnatal ontogenetic development of the vocal organs up to their respective end states takes considerably longer in males than in females. Both sexes share the same features of vocal morphology but differences emerge in the course of ontogeny, ultimately resulting in the pronounced sexual dimorphism of the vocal apparatus in adults. The main differences comprise larynx size, vocal fold length, vocal tract length, and mobility of the larynx. The resilience of the thyrohyoid ligament and the pharynx, including the soft palate, and the length changes during contraction and relaxation of the extrinsic laryngeal muscles play a decisive role in the mobility of the larynx in both sexes but to substantially different degrees in adult females and males. Goitred gazelles are born with an undescended larynx and, therefore, larynx descent has to develop in the course of ontogeny. This might result from a trade‐off between natural selection and sexual selection requiring a temporal separation of different laryngeal functions at birth and shortly after from those later in life. J. Morphol. 277:826–844, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
6.
Summary Phage adsorption tests and transfection by electroporation were carried out to decide whether phage-resistance in Lactococcus lactis subsp. lactis strain 4513-5 is based on intracellular or extracellular mechanisms. Using high voltage (12.5 kV/cm) electroporation, untreated phage DNA was introduced into phage-sensitive and phage-resistant cells. Since phages showed low adsorption frequencies on resistant bacteria, resistance is localized in the cell wall preventing phage DNA from entering the cell. This is the only mechanism responsible for the resistance of L. lactis subsp. lactis 4513-5 against its homologous phage P4513-K12 and non-homologous phages P05M-13 and P05M-47, but not against phage P530-7 and phage P530-12. In the case of the latter two phage strains, intracellular resistance mechanisms are involved and discussed.  相似文献   
7.
8.
Abstract Fifteen Streptomyces strains capable of decolorizing humic acids in presence of glucose were isolated from soil samples using the dilute suspension technique and spread on agar plates. Six strains, displaying a significant and stable activity, were selected for further characterization. Some features of these isolates (carbon source utilization, enzyme production, antibiotic resistance) were compared with those of the reference strain Streptomyces viridosporus ATCC 39115. Degradation properties studied in batch cultures at pH 7.0 showed that the catabolic activity on humic acids was generally stimulated by incubation with 100% oxygen and was cell surface-associated. Peroxidase activity from cell-free extracts was analysed by using the oxidation of N,N,N′,N′-tetramethyl-phenylene-diamine. PAGE analysis revealed the existence of two major types of peroxidases (molecular mass: about 39.2 and 61.6 kDa), dividing the strains into two groups. The role of cell surface-associated peroxidase activity in the breakdown of humic acids is discussed.  相似文献   
9.
10.
Gall-inducing insects are highly specialized herbivores that modify the phenotype of their host plants. Beyond the direct manipulation of plant morphology and physiology in the immediate environment of the gall, there is also evidence of plant-mediated effects of gall-inducing insects on other species of the assemblages and ecosystem processes associated with the host plant. We analysed the impact of gall infestation by the aphid Pemphigus spirothecae on chemical leaf traits of clonal Lombardy poplars (Populus nigra var. italica) and the subsequent effects on intensity of herbivory and decomposition of leaves across five sites. We measured the herbivory of two feeding guilds: leaf-chewing insects that feed on the blade (e.g. caterpillars and sawfly larvae) and skeletonising insects that feed on the mesophyll of the leaves (e.g. larvae of beetles). Galled leaves had higher phenol (35%) and lower nitrogen and cholorophyll contents (35% respectively 37%) than non-galled leaves, and these differences were stronger in August than in June. Total herbivory intensity was 27% higher on galled than on non-galled leaves; damage by leaf chewers was on average 61% higher on gall infested leaves, whereas damage by skeletonising insects was on average 39% higher on non-galled leaves. After nine months the decomposition rate of galled leaf litter was 15% lower than that of non-galled leaf litter presumably because of the lower nitrogen content of the galled leaf litter. This indicated after-life effects of gall infestation on the decomposers. We found no evidence for galling x environment interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号