首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 671 毫秒
1.
吴艳  沈宏  陈建红 《应用生态学报》2008,19(5):1125-1130
AHA1基因是植物体内编码质膜H+ATPase的一个重要基因,参与植物的生长发育与抗逆胁迫反应.本文以AHA1转基因型及其野生型拟南芥为材料,研究了铝胁迫对拟南芥养分吸收、抗氧化胁迫和有机酸分泌的影响.结果表明:Al降低了拟南芥根系对N、K、Ca和Mg的吸收,但增加了根系对P的吸收,且AHA1转基因型拟南芥比野生型积累更多的P和较少的Al.铝胁迫诱导拟南芥抗氧化酶SOD和POD活性增加,转基因型与野生型之间没有明显差异.Al对拟南芥有机酸分泌具有明显的诱导作用,且AHA1转基因型分泌较多的有机酸.质膜H+ATPase的活性抑制剂钒酸盐对拟南芥有机酸分泌具有明显的抑制作用;而Zn2+、Mg2+可促进Al对拟南芥有机酸分泌的诱导,并部分恢复钒酸盐的抑制效应.说明AHA1基因通过增加拟南芥根系对P的吸收以及有机酸分泌,提高了植物的抗铝性.  相似文献   

2.
马尾松幼苗生长及生理特性对铝胁迫的响应   总被引:4,自引:0,他引:4  
以马尾松幼苗为试验材料,采用水培法研究铝胁迫(Al3+浓度为0、0.2、0.4、0.8、1.6 mmol·L-1)对马尾松幼苗生长及其针叶中叶绿素、渗透调节物质(可溶性糖、可溶性蛋白、脯氨酸)、丙二醛(MDA)和超氧化物歧化酶(SOD)、过氧化物酶(POD)等保护酶活性的影响,为揭示马尾松铝毒害生理机制及提高马尾松的耐铝能力提供理论依据。结果显示:当Al3+处理浓度为0.2 mmol·L-1时对马尾松株高和基径生长的影响较小,但对马尾松根系生长有一定的促进作用;Al3+处理浓度大于0.2 mmol·L-1时对马尾松株高、基径和根长的生长均会产生一定的抑制作用,且这种抑制作用随着Al3+浓度的增大而增强。马尾松针叶中叶绿素含量和SOD、POD活性均随着Al3+处理浓度的增加呈先上升后下降的趋势;Al3+处理浓度大于0.2 mmol·L-1时马尾松针叶中可溶性糖、可溶性蛋白、脯氨酸等渗透调节物质均呈上升趋势,且随着Al3+浓度的升高而增大;Al3+处理浓度大于0.2 mmol·L-1时马尾松针叶中MDA含量也呈上升趋势,且随着Al3+浓度的增大而升高,说明大于0.2 mmol·L-1的Al3+处理可导致马尾松膜脂产生氧化。研究表明,马尾松幼苗具有一定的耐铝能力,在铝胁迫生境下可通过提高自身SOD和POD等保护酶的合成和主动积累脯氨酸、蛋白质和可溶性糖等渗透物质,产生适应性生理响应以维持自身的生理平衡来降低铝毒害作用。  相似文献   

3.
铝胁迫下植物根系的有机酸分泌及其解毒机理   总被引:14,自引:0,他引:14  
酸性土壤中的铝毒害问题,已成为限制植物生长发育的主要因素之一.耐铝植物通过根系分泌有机酸来解除或减轻铝的毒害是外部解铝毒的重要机制.文章对铝胁迫下植物根系分泌有机酸的种类,有机酸解铝毒机理、解铝毒能力,有机酸分泌方式及调控其分泌的主要因素等相关研究进行综述.  相似文献   

4.
 以耐铝性明显差异的两个大豆(Glycine max)基因型‘浙秋2号’(耐性)和‘浙春3号’(敏感)为材料, 研究根尖边缘细胞比活度、粘液分泌和根长对铝胁迫和解除胁迫的反应, 明确边缘细胞的粘液分泌对策在铝毒环境中的生态学意义。结果表明, ‘浙秋2号’在100~400 µmol&;#8226;L–1 Al3+处理的3~12 h, 边缘细胞比活率呈递减趋势, 12 h后比活率又略有上升。‘浙春3号’在300和400 µmol&;#8226;L–1 Al3+处理的变化与前者一致。两个大豆基因型的粘液层随着Al3+浓度增加和时间延长而增厚, 并于400 µmol&;#8226;L–1 Al3+处理24 h时达到最大(>17 µm)。‘浙秋2号’在低浓度Al3+ (100和200 µmol&;#8226;L–1)处理3~6 h后就会分泌大量粘液, ‘浙春3号’则在300 µmol&;#8226;L–1 Al3+处理12 h后才有类似的变化。‘浙秋2号’在400 µmol&;#8226;L–1 Al3+处理下的根相对伸长率均高于100~300 µmol&;#8226;L–1 Al3+处理, ‘浙春3号’则表现为Al3+浓度越高, 根伸长受抑越明显。Al3+胁迫解除后, ‘浙秋2号’的粘液分泌速度和分泌量急剧下降, ‘浙春3号’在胁迫解除后的24 h, 仍会持续、大量地分泌粘液(>19 µm)。可见, 耐性大豆通过在铝胁迫初期快速、大量地分泌粘液以维持较高的边缘细胞活性和解除胁迫后迅速降低粘液的分泌速度及分泌量来适应铝毒害环境。  相似文献   

5.
植物耐铝的生物化学与分子机理   总被引:13,自引:1,他引:12  
某些耐铝植物在铝胁迫下分泌有机酸被认为是一个重要的抗性机制.从根系分泌出来的有机酸能与根际的Al3 结合,形成无毒性的螯合物,从而减轻了铝对根系的毒害.但是,铝诱导有机酸分泌的中间环节及调节机制至今仍不清楚.一些证据表明,铝能激活根尖细胞质膜内的阴离子通道,因而可以调节有机酸的分泌.近年来,人们开始注意一些信号分子如蛋白激酶、水杨酸等介导铝诱导有机酸的分泌,已经获得一些成果.同时,铝胁迫基因的分离和鉴定也为人们从分子水平上研究和认识铝胁迫下植物的抗性机制奠定了基础.  相似文献   

6.
为探究铝胁迫对菊芋根系分泌物的影响以及外源水杨酸(SA)的缓解作用,该文以耐铝型南京菊芋和铝敏感型资阳菊芋为试验材料,采用土培法,设置铝浓度500 μmol·L-1,分析了不同浓度(10、100、1 000 μmol·L-1)SA对铝胁迫下菊芋根系分泌物中有机酸、氨基酸以及根尖相关代谢酶活的影响。结果表明:(1)单铝胁迫会导致菊芋根系分泌物中柠檬酸、草酸、苹果酸浓度升高,且南京菊芋升高幅度大于资阳菊芋; 柠檬酸合酶和苹果酸脱氢酶在单铝胁迫下活性增强; 脯氨酸含量显著提升,总氨基酸浓度均显著减少。(2)外源SA加入后,南京菊芋根系分泌的柠檬酸、草酸、苹果酸浓度均得到不同程度提高,但经高浓度(1 000 μmol·L-1)SA处理后资阳菊芋根系分泌草酸显著降低,且在各浓度SA处理下苹果酸浓度均无明显变化; 柠檬酸合酶活性出现不同程度的增强,但对南京菊芋根尖中苹果酸脱氢酶活性影响不大,且高浓度(1 000 μmol·L-1)SA处理后显著降低了资阳菊芋根尖中苹果酸脱氢酶活性; 脯氨酸含量显著下降,从总氨基酸浓度变化来看,南京菊芋在高浓度(1 000 μmol·L-1)SA、资阳菊芋在低浓度(10 μmol·L-1)SA处理下得到最大缓解效果。因此,菊芋通过分泌有机酸应对铝毒侵害,外源SA可促进菊芋根系有机酸代谢速率,分泌更多的有机酸来缓解铝胁迫,这种缓解效果在耐铝性相对较强的南京菊芋中表现更好。  相似文献   

7.
酸性土壤上铝毒是限制作物产量的一个重要障碍因子。具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用。在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸、草酸、苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖。不同的物种间分泌的有机酸种类、分泌的模式及生理机理存在差异。在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体。本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

8.
有机酸在植物解铝毒中的作用及生理机制   总被引:11,自引:0,他引:11  
酸性土壤上铝毒是限制作物产量的一个重要障碍因子,具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用,在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸,草酸,苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖,不同的物种间分泌的有机酸种类,分泌的模式及生理机理存在差异,在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体,本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

9.
冯婧玮  冯万艳  孙学广 《菌物学报》2022,41(7):1055-1067
低磷和酸铝胁迫是酸性土壤限制植物生长的主要因素。有研究指出外生菌根(ectomycorrhiza,ECM)可提高宿主植物对铝毒害和低磷胁迫的适应性。然而,目前有关ECM真菌自身对低磷和酸铝环境的适应机理还不清楚。基于此,本研究以我国南方酸性土壤广泛分布的ECM真菌——粘盖乳牛肝菌Suillus bovinus为研究对象,在纯培养条件下研究了低磷、酸铝胁迫对其生长、营养吸收及菌丝分泌物的影响。结果表明,粘盖乳牛肝菌是一种耐铝型真菌,酸铝胁迫(1 mmol/L)不影响其菌丝生长,而低磷胁迫(20 μmol/L)则显著限制其菌丝生长(P<0.05)。值得注意的是,低磷胁迫的抑制效应可被酸铝胁迫逆转。低磷胁迫显著降低了粘盖乳牛肝菌对磷的吸收(P<0.05),而酸铝胁迫则对菌丝钾的吸收有促进作用。低磷、酸铝胁迫同样改变了菌丝分泌物组成。在低磷胁迫下,大量酚酸类、有机酸及脂质代谢物的积累量下调;而酸铝胁迫下则有大量酚酸类物质上调,有机酸和脂质中上调代谢物数量也高于下调数量;低磷酸铝复合胁迫下酚酸和有机酸类代谢物积累量均显著上调。另外,吲哚-3-乙酸(IAA)在各胁迫下均显著上调。以上结果可在一定程度上解释粘盖乳牛菌对低磷、酸铝环境的适应机理,并对后续进一步阐明ECM的共生适应机理有一定指导意义。  相似文献   

10.
以燕麦品种‘白燕2号’为材料,试验分别设置0、50、100、150、200 mmol/L盐胁迫(NaCl∶Na2SO4=5∶1)和碱胁迫(NaHCO3∶Na2CO3=5∶1)处理的温室内盆栽试验,观测燕麦植株生长速率、植株含水率、叶片离子含量及叶片各类有机酸含量,分析不同盐胁迫、碱胁迫对燕麦离子平衡的影响,并比较燕麦对两类胁迫的适应性差异。结果显示:(1)燕麦植株生长速率和植株含水率在低浓度(50和100 mmol/L)盐胁迫下均升高,而高浓度(150和200 mmol/L)盐胁迫下则降低;燕麦植株生长速率和植株含水率均随碱胁迫浓度增加而降低;在相同胁迫浓度下,碱胁迫对植株生长率、植株含水率的影响大于盐胁迫。(2)燕麦叶片K+、Ca2+、Mg2+、H3PO-4、NO-3 含量均随盐、碱浓度升高而降低,而Na+、Cl-、SO2-4含量在盐、碱胁迫下均大幅上升;200 mmol/L盐、碱胁迫下,Na+ 含量分别较对照增加367.15%和518.41%,Cl- 含量分别较对照增加785.07%和52.59%,SO2-4 分别较对照增加142.01%和52.86%。(3)200 mmol/L盐、碱胁迫下,有机酸分别较对照增加74.52%和1 232.34%;碱胁迫及高浓度盐胁迫下燕麦叶片的柠檬酸、乌头酸、琥珀酸和苹果酸含量均高于对照,且乌头酸是燕麦响应盐胁迫、碱胁迫的主要有机酸成分,柠檬酸和琥珀酸略有变化,而甲酸、乙酸、乳酸、苹果酸、草酸含量均相对较低。研究表明,碱胁迫对燕麦植株生长速率、植株含水率、叶片离子含量及叶片各类有机酸含量的影响大于盐胁迫;盐胁迫与碱胁迫均引起燕麦叶片阳离子(Na+)大量积累,而K+、Ca2+、Mg2+、H3PO-4及NO-3吸收受阻;燕麦叶片在盐胁迫下主要通过积累Cl-调节叶片离子平衡,而碱胁迫下主要通过积累有机酸来调节离子平衡;有机酸是燕麦叶片响应碱胁迫的特异代谢物,其中乌头酸是其有机酸的主要成分。  相似文献   

11.
Aluminum (Al) is a limiting factor of crop yields on acidic soils. Ion aluminum (Al3+) acts primarily in plant root system retarding its growth and development, leading to the reduction of lateral roots number, and consequently the decrease of vegetal production. Most of coffee producing areas are located in acidic soils, which have Al3+ contents enough to damage plant development. Despite the advances in the understanding of physiological and genetic mechanisms of Al tolerance/susceptibility, few are known about Al ion action in coffee plants. This report describes the expression analysis of genes related to aluminum stress in germinating seeds of two cultivars of C. arabica (Catuaí Amarelo IAC 62 and Icatu Vermelho IAC 4045) when challenged with Al3+. In silico analyses of Brazilian Coffee Genome Project (BCGP) database were used to select genes previously found to be related with Al-stress. The expression profile of these genes in Catuaí and Icatu was evaluated through Quantitative PCR (qPCR). Based on our data, we suggest that both analyzed cultivars displays mechanisms of resistance or exclusion, which occurs outside the cell excluding Al3+ assimilation, and mechanisms of tolerance that occurs inside the cell after Al3+ absorption. The major difference is the timing of activation of each mechanism. While Catuaí tends to use resistance mechanisms in early stages of stress, Icatu uses tolerance strategies. In late stages, both cultivars seem to display tolerance mechanisms, but Icatu also displays Al-exclusion strategy.  相似文献   

12.
Soil acidity is an impediment to agricultural production on a significant portion of arable land worldwide. Low productivity of these soils is mainly due to nutrient limitation and the presence of high levels of aluminium (Al), which causes deleterious effects on plant physiology and growth. In response to acidic soil stress, plants have evolved various mechanisms to tolerate high concentrations of Al in the soil solution. These strategies for Al detoxification include mechanisms that reduce the activity of Al3+ and its toxicity, either externally through exudation of Al-chelating compounds such as organic acids into the rhizosphere or internally through the accumulation of Al–organic acid complexes sequestered within plant cells. Additionally, root colonization by symbiotic arbuscular mycorrhizal (AM) fungi increases plant resistance to acidity and phytotoxic levels of Al in the soil environment. In this review, the role of the AM symbiosis in increasing the Al resistance of plants in natural and agricultural ecosystems under phytotoxic conditions of Al is discussed. Mechanisms of Al resistance induced by AM fungi in host plants and variation in resistance among AM fungi that contribute to detoxifying Al in the rhizosphere environment are considered with respect to altering Al bioavailability.  相似文献   

13.
铝胁迫下小麦根部苹果酸和柠檬酸的直接测定   总被引:2,自引:0,他引:2  
铝的有害性严重制约了约占世界可耕地面积40%的酸性土壤中的作物生产。从植物的培养液巾发现从根部分泌出的有机酸与铝结合从而实现无毒化是其抗铝逆性机理的重要依据。而本文直接测定了铝胁迫下培育的小麦根中的铝和有机酸含量,确认了主要积累的是苹果酸和柠檬酸。发现随着提高培养液中的铝浓度,根部的铝含量也相应增加。同时,虽然根中的柠檬酸含量无明显变化,但苹果酸被诱导增加。通过对有机酸与铝的络合能力的调查,探讨了对植物抗铝逆性强弱的影响。  相似文献   

14.
Soluble aluminum (Al3+) is a major constraint to plant growth in highly acidic soils, which comprise up to 50% of the world??s arable land. The primary mechanism of Al resistance described in plants is the chelation of Al3+ cations by release of organic acids into the rhizosphere. Candidate aluminum tolerance genes encoding organic acid transporter of the ALMT (aluminum-activated malate transporter) and MATE (multi-drug and toxic compound extrusion) families have been characterized in several plant species. In this study, we have isolated in five different cultivars the rye ScAACT1 gene, homolog to barley aluminum activated citrate transporter HvAACT1. This gene mapped to the 7RS chromosome arm, 25?cM away from the ScALMT1 aluminum tolerance gene. The gene consisted of 13 exons and 12 introns and encodes a predicted membrane protein that contains the MatE domain and at least seven putative transmembrane regions. Expression of the ScAACT1 gene is Al-induced, but there were differences in the levels of expression among the cultivars analyzed. A new quantitative trait locus for Al tolerance in rye that co-localizes with the ScAACT1 gene was detected in the 7RS chromosome arm. These results suggest that the ScAACT1 gene is a candidate gene for increased Al tolerance in rye. The phylogenetic relationships between different MATE proteins are discussed.  相似文献   

15.
  • Worldwide, 50% of soil is acidic, which induces aluminium (Al) toxicity in plants, as the phyto‐availability of Al3+ increases in acidic soil. Plants responds to Al3+ toxicity by exuding organic acids into the rhizosphere. The organic acid responsible for Al3+ stress response varies from species to species, which in the case of blackgram (Vigna mungo L.) is citrate.
  • In blackgram, an Arabidopsis malate transporter, AtALMT1, was overexpressed with the motive of inducing enhanced exudation of malate. Transgenics were generated using cotyledon node explants through Agrobacterium tumefaciens‐mediated transformation. The putative transgenics were initially screened by AtALMT1‐specific genomic DNA PCR, followed by quantitative PCR. Two independent transgenic events were identified and functionally characterized in the T3 generation.
  • The transgenic lines, Line 1 and 2, showed better root growth, relative water content and chlorophyll content under Al3+ stress. Both lines also accounted for less oxidative damage, due to reduced accumulation of ROS molecules. Photosynthetic efficiency, as measured in terms of Fv/Fm, NPQ and Y(II), increased when compared to the wild type (WT). Relative expression of genes (VmSTOP1, VmALS3, VmMATE) responsible for Al3+ stress response in blackgram showed that overexpression of a malate transporter did not have any effect on their expression. Malate exudation increased whereas citrate exudation did not show any divergence from the WT. A pot stress assay found that the transgenics showed better adaptation to acidic soil.
  • This report demonstrates that the overexpression of a malate transporter in a non‐malate exuding species improves adaptation to Al3+ toxicity in acidic soil without effecting its stress response mechanism.
  相似文献   

16.
Molecular physiology of aluminum toxicity and tolerance in plants   总被引:2,自引:0,他引:2  
Aluminum being the third most abundant metal in the earth’s crust poses a serious threat to crop productivity in acid soils, which comprise almost half of the arable land. This review travels across time and updates research done on aluminum stress in plants. In its phytotoxic forms, aluminum affects root growth by acting in the root apical zone, resulting in growth inhibition in a very short time at micromolar concentrations. The mechanisms of aluminum toxicity in plants may proceed by growth inhibition, callose accumulation, cytoskeletal distortion, disturbance of plasma membrane surface charge, and H+-ATPase activity, lipid peroxidation of membranes, production of reactive oxygen species in cytosol and mitochondria, respiratory dysfunction, opening of mitochondrial permeability transition pores, collapsing of inner mitochondrial membrane potential, activation of mitochondrial protease, and induction of nuclear apoptosis, resulting ultimately in programmed cell death. In contrast, the mechanism of tolerance involves the exudation of organic acid anions, complexation of aluminum with organic acids, and subsequent detoxification. Many oxidative stress genes and other metabolically important genes have also been found to be induced under aluminum stress and overexpression analyses have also shown some plants to develop some degree of tolerance. In the future, researchers in the area of aluminum research should investigate more basic mechanisms of aluminum toxicity and discover and study more aluminum-responsive genes that confer resistance against this toxic metal, to ensure food security for ever-increasing human populations in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号