首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
植物地上部对铝毒的生理响应及其耐性   总被引:1,自引:0,他引:1  
全世界50%以上潜在的可耕地属于酸性土壤,铝毒害是酸性土壤上植物生长最有害因素之一。近年来,为了阐明植物铝毒害及其耐性,前人已进行了大量的研究,并有一些综述性文章发表。然而,大多数文章主要综述铝对植物根系的影响及其耐性,因为根生长受抑是最早的铝毒害症状之一和溶液培养时最容易辨认的铝毒害症状。为此,本文综述了铝对植物地上部光合作用、光保护系统、水分利用效率、含水量、碳水化合物含量、矿质营养、有机酸和氮代谢的影响,并对富铝植物的解铝毒机制(铝与小分子有机酸螯合和把铝隔离在对铝不敏感的表皮细胞和液泡内)进行了综述。本文还对植物耐铝遗传学和分子生物学及今后需要研究的问题进行了讨论。  相似文献   

2.
植物耐铝的生物化学与分子机理   总被引:13,自引:1,他引:12  
某些耐铝植物在铝胁迫下分泌有机酸被认为是一个重要的抗性机制.从根系分泌出来的有机酸能与根际的Al3 结合,形成无毒性的螯合物,从而减轻了铝对根系的毒害.但是,铝诱导有机酸分泌的中间环节及调节机制至今仍不清楚.一些证据表明,铝能激活根尖细胞质膜内的阴离子通道,因而可以调节有机酸的分泌.近年来,人们开始注意一些信号分子如蛋白激酶、水杨酸等介导铝诱导有机酸的分泌,已经获得一些成果.同时,铝胁迫基因的分离和鉴定也为人们从分子水平上研究和认识铝胁迫下植物的抗性机制奠定了基础.  相似文献   

3.
有机酸在植物解铝毒中的作用及生理机制   总被引:11,自引:0,他引:11  
酸性土壤上铝毒是限制作物产量的一个重要障碍因子,具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用,在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸,草酸,苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖,不同的物种间分泌的有机酸种类,分泌的模式及生理机理存在差异,在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体,本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

4.
酸性土壤上铝毒是限制作物产量的一个重要障碍因子。具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用。在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸、草酸、苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖。不同的物种间分泌的有机酸种类、分泌的模式及生理机理存在差异。在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体。本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

5.
低磷和铝毒胁迫条件下菜豆有机酸的分泌与累积   总被引:19,自引:3,他引:16  
沈宏  严小龙 《生态学报》2002,22(3):387-394
以水培方式研究了低磷、铝毒胁迫条件下,不同菜豆基因型根系有机酸的分泌及其在植穆不同部位的累积,结果表明,低磷,铝毒胁迫诱导菜豆有机酸的分泌与累积存在显著的基因差异。低磷、铝毒胁迫诱导菜豆主要分泌柠檬酸、酒石酸和乙酸,其中,50μmol/LAl^3 诱导柠檬酸分泌量最高;低磷(小于20μmol/LH2PO4^-)胁迫诱导柠榨菜酸分泌量显著高于高磷处理,但低磷处理之间差异不明显,铝毒胁迫诱导菜豆有机酸的分泌与累积显著高于低磷胁迫处理,低磷,铝毒胁迫植株不同部位有机酸的含量为叶片大小根系,低磷,铝毒胁迫时,G842菜豆型柠檬酸有机酸分泌总量显著高于273、AFR和ZPV,其干重和磷吸收明明显于大G273,AFR和ZPV,且铝吸收量小于G273,AFR和ZPV,说明,G482菜豆基因型对低磷,铝毒的适应能力强于G273,AFR和ZPV基因型,菜豆有机酸,,尤其柠檬酸的分泌是其适应低磷、铝毒胁迫的重要生理反应。  相似文献   

6.
植物根系有机酸的分泌和解铝毒作用   总被引:11,自引:2,他引:9  
对植物有机酸的解铝毒作用及释放机制,尤其是对铝刺激的阴离子通道的研究进展作了介绍.  相似文献   

7.
酸性土壤上植物应对铝胁迫的过程与机制   总被引:1,自引:1,他引:0  
铝胁迫是酸性土壤上影响作物产量最重要的因素之一.目前,全球土壤酸化程度进一步加剧了铝胁迫.植物可通过将铝离子与有机酸螯合储藏于液泡和从根系中排出铝毒.排出铝毒主要通过苹果酸转运蛋白ALMT和柠檬酸转运蛋白MATE的跨膜运输来实现.编码ABC转运蛋白和锌指转录因子的基因与植物抗铝胁迫有关.这些抗铝毒基因的鉴别使得通过转基因和分子标记辅助育种等生物技术来提高农作物的抗铝毒能力成为可能.最后提出了植物抗铝胁迫研究中需要解决的关键问题及今后的研究方向.  相似文献   

8.
植物铝毒害及遗传育种研究进展   总被引:38,自引:0,他引:38  
本文简单概述了目前植物铝毒害及遗传育方面的研究进展,Al^3 可以通过与细胞骨架的作用,影响根的正常生理功能和形态建成,植物可以通过根尖分泌有机酸或磷酸等将离子态的为成螯合态的铝,通过吸收H^ 提高根尖周围的pH,将Al^3 变成难溶性的Al(OH)3或磷酸铝从而解 除铝毒害,也可以通过在细胞内与Al^3 形成无毒害的复合结构从而解除铝毒害,国外通过基因工程和突变体筛选已经获得了一批耐铝的植物材料,国内一些研究者通过变体筛选也获得了一些耐铝的植物材料,对植物耐铝性的遗传研究表明,植物的耐铝性既可以是受单基因控制的,也可以是受多基因控制的。  相似文献   

9.
根分泌的有机酸对土壤磷和微量元素的活化作用   总被引:47,自引:12,他引:35  
在养分胁迫下,尤其是缺磷条件下,许多植物可通过增加有机酸的分泌,作为其适应机制.讨论了营养胁迫条件下不同生态型植物根系分泌有机酸的种类,分析了不同生态型植物分泌的有机酸种类和数量之间的差异.结果表明,在缺磷条件下植物根系所分泌有机酸的种类和数量与它们所处的土壤环境关系密切.在营养胁迫条件下植物根系分泌的有机酸具有活化土壤磷、微量元素和缓解Al毒的功能;对有机酸活化土壤养分,解Al毒可能的作用机制进行了论述  相似文献   

10.
大豆耐铝性品种差异及其与有机酸的关系   总被引:10,自引:2,他引:8  
刘拥海  俞乐 《广西植物》2004,24(6):554-557,549
从 1 0个大豆品种中筛选出两个耐铝性差异显著的品种 ,研究了其耐铝性与有机酸的关系。经铝处理后 ,吴川品种的相对根长为 1 3 3 .5 % ,化州只有 68.9% ,表明吴川相对耐铝 ,化州对铝较敏感。将不同浓度的AlCl3 加入营养液中处理大豆 1 0d,化州较吴川根长受到较大影响 ,进一步证实吴川相对耐铝毒 ,而化州对酸铝敏感。机理研究发现大豆在铝胁迫下根系可分泌两种有机酸 (草酸、柠檬酸 ) ,其中吴川根系草酸分泌速率提高了 74% ,化州几乎没有提高 ,表明耐铝性大豆品种的根系草酸分泌速率明显提高 ,可增强其缓解酸铝毒性的能力。而二者分泌柠檬酸的速率虽然均有显著提高 ,但处理后感抗品种之间差异不大 ,表明柠檬酸在缓解铝毒性中的作用不大。铝处理下大豆根系虽然分泌两种有机酸 ,但草酸在大豆耐酸铝机制中的作用可能更为重要。  相似文献   

11.
12.
Using common beans differing greatly in the response to photoperiod and low-phosphorus (P) stress, we investigated their responses to acidity and aluminum (Al)toxicity and the relationship between Al tolerance and organic acid exudation under Al or low P stress. A genotype Ginshi was found to be sensitive to low pH treatment. When exposed to pH 4.5, serious curvature in the root tips of cv. Ginshi was observed; however, it was completely corrected by the application of 5 or 10 μmol/L AlCl3; increasing calcium (Ca) could ameliorate Al toxicity, but it could not correct root curvature at pH 4.5. Common beans showed significant differences in both root growth and Al tolerance, and the varieties from the Andes were more tolerant to Al toxicity than those from the Mesoamerican origin. In the presence of 50 μmol/L AlCl3,all the common bean genotypes exuded citrate, and a significant difference in the amounts of citrate was observed among genotypes. The genotypes originated in the Mesoamerica tended to release more citrate than other origins in the presence of Al. The P-inefficient genotype DOR364 exuded more citrate than the P-efficient genotype G19833 in the presence of 50 μmol/L AlCl3, whereas no organic acids were detected in root exudates under low-P stress. A reduction of citrate exudation in the DOR364, but a slight increase of citrate exudation in the G19833, was observed under Al stress after they were exposed to 6-d P starvation. These results suggest that different low-P or Al tolerance in common beans might not be associated with organic acid exudation.  相似文献   

13.
Aluminum (Al) toxicity is the primary factor limiting crop production on acidic soils (pH values of 5 or below), and because 50% of the world’s potentially arable lands are acidic, Al toxicity is a very important limitation to worldwide crop production. This review examines our current understanding of mechanisms of Al toxicity, as well as the physiological, genetic and molecular basis for Al resistance. Al resistance can be achieved by mechanisms that facilitate Al exclusion from the root apex (Al exclusion) and/or by mechanisms that confer the ability of plants to tolerate Al in the plant symplasm (Al tolerance). Compelling evidence has been presented in the literature for a resistance mechanism based on exclusion of Al due to Al-activated carboxylate release from the growing root tip. More recently, researchers have provided support for an additional Al-resistance mechanism involving internal detoxification of Al with carboxylate ligands (deprotonated organic acids) and the sequestration of the Al-carboxylate complexes in the vacuole. This is a field that is entering a phase of new discovery, as researchers are on the verge of identifying some of the genes that contribute to Al resistance in plants. The identification and characterization of Al resistance genes will not only greatly advance our understanding of Al-resistance mechanisms, but more importantly, will be the source of new molecular resources that researchers will use to develop improved crops better suited for cultivation on acid soils.  相似文献   

14.
Development of acid soils that limit crop production is an increasing problem worldwide. Many factors contribute to phytotoxicity of these soils, however, in acid soils with a high mineral content, aluminum (Al) is the major cause of toxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. Natural variation for Al tolerance has been identified in many crop species and in some crops tolerance to Al has been introduced into productive, well-adapted varieties. Aluminum tolerance appears to be a complex multigenic trait. Selection methodology remains a limiting factor in variety development as all methods have particular drawbacks. Molecular markers have been associated with Al tolerance genes or quantitative trait loci in Arabidopsis and in several crops, which should facilitate development of additional tolerant varieties. A variety of genes have been identified that are induced or repressed upon Al exposure. Most induced genes characterized so far are not specific to Al exposure but are also induced by other stress conditions. Ectopic over-expression of some of these genes has resulted in enhanced Al tolerance. Additionally, expression of genes involved in organic acid synthesis has resulted in enhanced production of organic acids and an associated increase in Al tolerance. This review summarizes the three main approaches that have been taken to develop crops with Al tolerance: recurrent selection and breeding, development of Al tolerant somaclonal variants and ectopic expression of transgenes to reduce Al uptake or limit damage to cells by Al.  相似文献   

15.
酸铝胁迫是限制植物正常生长发育的重要非生物胁迫因子,严重制约了我国酸性土壤地区的农业生产水平。植物抵御酸铝胁迫的形式复杂多样,如分泌有机酸、提高根际pH、分泌黏液、细胞壁对Al3+的固定、有机酸对细胞溶质中Al3+的螯合与液泡区隔化等。现有研究多集中于常规生理特征分析,缺乏深入的分子生物学解析。基于此,本文对国内外植物适应酸铝胁迫机理的相关研究进行了归纳和总结,从酸铝胁迫对植物生长与生理代谢的影响、植物适应酸铝胁迫最主要的两种生理机制(Al排除机制、Al耐受机制)以及分子水平上调控相关耐铝基因进行了综述。最后针对现有研究的不足提出了展望,以期为深入揭示植物适应酸铝胁迫的机理以及挖掘适于酸土生长的优质作物资源提供理论依据。  相似文献   

16.
The phytotoxic effects of aluminum (Al) on root systems of crop plants constitute a major agricultural problem in many areas of the world. Root exudation of Al-chelating molecules such as low-molecular-weight organic acids has been shown to be an important mechanism of plant Al tolerance/resistance. Differences observed in the physiology and electrophysiology of root function for two maize genotypes with contrasting Al tolerance revealed an association between rates of Al-activated root organic acid release and Al tolerance. Using these genotypes, we cloned ZmALMT1 , a maize gene homologous to the wheat ALMT1 and Arabidopsis AtALMT1 genes that have recently been described as encoding functional, Al-activated transporters that play a role in tolerance by mediating Al-activated organic acid exudation in roots. The ZmALMT1 cDNA encodes a 451 amino acid protein containing six transmembrane helices. Transient expression of a ZmALMT1 ::GFP chimera confirmed that the protein is targeted to the plant cell plasma membrane. We addressed whether ZmALMT1 might underlie the Al-resistance response (i.e. Al-activated citrate exudation) observed in the roots of the Al-tolerant genotype. The physiological, gene expression and functional data from this study confirm that ZmALMT1 is a plasma membrane transporter that is capable of mediating elective anion efflux and influx. However, gene expression data as well as biophysical transport characteristics obtained from Xenopus oocytes expressing ZmALMT1 indicate that this transporter is implicated in the selective transport of anions involved in mineral nutrition and ion homeostasis processes, rather than mediating a specific Al-activated citrate exudation response at the rhizosphere of maize roots.  相似文献   

17.
Ionic stress caused by high aluminum (Al) concentrations is one of the most widespread phytotoxicity problems globally in agricultural regions, greatly limiting crop yield in affected areas. The objective of this work was to examine a possible involvement of boron (B) in the detoxification of Al by stimulating glutathione (GSH) metabolism, a mechanism essential for the resistance of plants under stress conditions. Our results clearly demonstrate that increased application of B in the presence of high Al concentrations in the growth medium stimulates GSH biosynthesis, suggesting it could be an effective strategy to combat stress associated with the formation of active-oxygen species (AOS). In the specific case of Al toxicity, B reduces phytotoxicity by stimulating leaf biosynthesis of GSH and an increase in its concentration in the roots. Therefore, in this work, we also identify GSH metabolism as one of the key processes in Al detoxification. Finally, our results imply that greater B application leads to a greater resistance to Al toxicity, a fact that might be significant for higher productivity of agricultural plants grown in acid soils.  相似文献   

18.
Aluminum (Al) toxicity is one of the major limiting factors for crop production on acid soils that comprise significant portions of the world's lands. Aluminum resistance in the cereal crop Sorghum bicolor is mainly achieved by Al‐activated root apical citrate exudation, which is mediated by the plasma membrane localized citrate efflux transporter encoded by SbMATE. Here we precisely localize tissue‐ and cell‐specific Al toxicity responses as well as SbMATE gene and protein expression in root tips of an Al‐resistant near‐isogenic line (NIL). We found that Al induced the greatest cell damage and generation of reactive oxygen species specifically in the root distal transition zone (DTZ), a region 1–3 mm behind the root tip where transition from cell division to cell elongation occurs. These findings indicate that the root DTZ is the primary region of root Al stress. Furthermore, Al‐induced SbMATE gene and protein expression were specifically localized to the epidermal and outer cortical cell layers of the DTZ in the Al‐resistant NIL, and the process was precisely coincident with the time course of Al induction of SbMATE expression and the onset of the recovery of roots from Al‐induced damage. These findings show that SbMATE gene and protein expression are induced when and where the root cells experience the greatest Al stress. Hence, Al‐resistant sorghum plants have evolved an effective strategy to precisely localize root citrate exudation to the specific site of greatest Al‐induced root damage, which minimizes plant carbon loss while maximizing protection of the root cells most susceptible to Al damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号