首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
酸铝胁迫是限制植物正常生长发育的重要非生物胁迫因子,严重制约了我国酸性土壤地区的农业生产水平。植物抵御酸铝胁迫的形式复杂多样,如分泌有机酸、提高根际pH、分泌黏液、细胞壁对Al3+的固定、有机酸对细胞溶质中Al3+的螯合与液泡区隔化等。现有研究多集中于常规生理特征分析,缺乏深入的分子生物学解析。基于此,本文对国内外植物适应酸铝胁迫机理的相关研究进行了归纳和总结,从酸铝胁迫对植物生长与生理代谢的影响、植物适应酸铝胁迫最主要的两种生理机制(Al排除机制、Al耐受机制)以及分子水平上调控相关耐铝基因进行了综述。最后针对现有研究的不足提出了展望,以期为深入揭示植物适应酸铝胁迫的机理以及挖掘适于酸土生长的优质作物资源提供理论依据。  相似文献   

2.
Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.  相似文献   

3.
Aluminum toxicity is a very important factor limiting crop productivity on acid soils. Early effects of aluminum toxicity comprise inhibition of cell division and effects on root elongation. The plasma membrane can be the primary target of aluminum toxicity and thus, vital staining techniques could be a powerful tool in determining effects of metal stress on the plasma membrane.

In this paper, we discuss the effects of Al on growth and membrane integrity by staining root tips with a mixture of fluorescein diacetate and propidium iodide.

The results show a good correlation between results from growth measurement and the vital staining. From the comparison of the luminosity patterns generated by vital staining it is easy to determine Al-resistant varieties, revealing this technique as a powerful and fast method for determining tolerance to Al in different varieties.  相似文献   


4.
Organic acids are valuable platform chemicals for future biorefining applications. Such applications involve the conversion of low-cost renewable resources to platform sugars, which are then converted to platform chemicals by fermentation and further derivatized to large-volume chemicals through conventional catalytic routes. Organic acids are toxic to many of the microorganisms, such as Escherichia coli, proposed to serve as biorefining platform hosts at concentrations well below what is required for economical production. The toxicity is two-fold including not only pH based growth inhibition but also anion-specific effects on metabolism that also affect growth. E. coli maintain viability at very low pH through several different tolerance mechanisms including but not limited to the use of decarboxylation reactions that consume protons, ion transporters that remove protons, increased expression of known stress genes, and changing membrane composition. The focus of this mini-review is on organic acid toxicity and associated tolerance mechanisms as well as several examples of successful organic acid production processes for E. coli.  相似文献   

5.
There has been no study on key enzymes in sucrose cleavage in metallophyte plants so far, which may be crucial for the plants’ root growth and heavy-metal tolerance maintenance. Here, we tested the hypothesis that the roots of copper tolerant plants should manifest a higher activity of acid invertases that are rate-limiting in sucrose catabolism than non-tolerant plants both for supporting growth and for their maintaining tolerance under Cu stress. Two populations of Kummerowia stipulacea, one from an ancient waste heap at a Cu mine, and the other from a non-contaminated site, were used in the experiments. The plants were grown in 1/2-fold (control) or 1/20-fold (nutrient deficiency) Hoagland’ solution, with (Cu stress) or without (control) 10 μmol/L Cu2+. Plants from the mine proved to be of Cu tolerance. Cu exposure had a stronger inhibition on root growth and thus resulting in a lower root/shoot ratio in the plants of non-mine population compared to the mine population. Cu exposure showed a stronger inhibition of acid invertase activity of Cu non-tolerant plants than Cu-tolerant plants, while neutral/alkaline invertase was insensitive to Cu. A positive correlation between the activity of acid invertases and the root growth and root/shoot ratio was observed. The results indicated an important role of acid invertases in governing root growth and root/shoot biomass allocation in the plants of mine population. The results also suggested that the higher activities in acid invertases of mine population plants might at least partly associate with the plants’ Cu tolerance, and their higher activities in acid invertases in turn played an role in maintenance of the Cu tolerance by supplying carbon and energy for tolerance mechanisms. In addition, the results showed evidence that neutral/alkaline invertase might play a role in compensating for the depression in sucrose catabolism due to Cu-induced inhibition in acid invertases.  相似文献   

6.
Aluminum (Al) toxicity is a major constraint for crop production in acidic soil worldwide. When the soil pH is lower than 5, Al3+ is released to the soil and enters into root tip cell ceases root development of plant. In acid soil with high mineral content, Al is the major cause of phytotoxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. A variety of genes have been identified that are induced or repressed upon Al exposure. At tissue level, the distal part of the transition zone is the most sensitive to Al. At cellular and molecular level, many cell components are implicated in the Al toxicity including DNA in nucleus, numerous cytoplastic compounds, mitochondria, the plasma membrane and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of the Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth. To develop high tolerance against Al stress is the major goal of plant sciences. This review examines our current understanding of the Al signaling with the physiological, genetic and molecular approaches to improve the crop performance under the Al toxicity. New discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of Al tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving the crop Al tolerance via molecular-assisted breeding and biotechnology.Key words: aluminum, toxicity, tolerance, signal transduction, plants  相似文献   

7.
Aluminum is one of the most important heavy metals inducing stress during plant growth and development. In this study, transgenic rice (Oryza sativa L., cv. Kitaake) plants expressing the maize C4PEPC and PPDK genes were evaluated for aluminum tolerance. A 4.3 and 19.1 folds increase of PPDK and PEPC activities in transgenic rice produced increases in root exudation of oxalate, malate, and citrate (1.20, 1.41, and 1.65 times, respectively) compared to untransformed (WT) plants. Transgenic rice had enhanced aluminum tolerance compared to WT based on chlorophyll fluorescence and chlorophyll levels. Transgenic plants under aluminum stress also had decreased lipid membrane oxidative damage and higher levels of ROS-scavenging enzyme activity. The PEPC and PPDK genes play an important role in aluminum stress tolerance by increasing the effluxes of organic acids.  相似文献   

8.
9.
植物对重金属耐性的分子生态机理   总被引:24,自引:0,他引:24       下载免费PDF全文
植物适应重金属元素胁迫的机制包括阻止和控制重金属的吸收、体内螯合解毒、体内区室化分隔以及代谢平衡等。近年来,随着分子生物学技术在生态学研究中的深入应用,控制这些过程的分子生态机理逐渐被揭示出来。菌根、根系分泌物以及细胞膜是控制重金属进入植物根系细胞的主要生理单元。外生菌根能显著提高寄主植物的重金属耐性,根系分泌物通过改变根际pH、改变金属物质的氧化还原状态和形成络合物等机理减少植物对重金属的吸收。目前,控制菌根和根系分泌物重金属抗性的分子生态机理还不清楚。但细胞膜跨膜转运器已得到深入研究,相关金属离子转运器被鉴定和分离,一些控制基因如铁锌控制运转相关蛋白(ZIP)类、自然抵抗相关巨噬细胞蛋白(Nramp)类、P1B-type ATPase类基因已被发现和克隆。金属硫蛋白(MTs)、植物螯合素(PCs)、有机酸及氨基酸等是植物体内主要的螯合物质,它们通过螯合作用固定金属离子,降低其生物毒性或改变其移动性。与MTs合成相关的MT-like基因已经被克隆,PCs合成必需的植物螯合素合酶(PCS), 即γ-Glu-Cys二肽转肽酶(γ-ECS) 的编码基因已经被克隆,控制麦根酸合成的氨基酸尼克烟酰胺(NA)在重金属耐性中的作用和分子机理也被揭示出来。ATP 结合转运器(ABC)和阳离子扩散促进器(CDF) 是植物体内两种主要膜转运器,通过它们和其它跨膜方式,重金属被分隔贮藏于液泡内。控制这些蛋白转运器合成的基因也已经被克隆,在植物中的表达证实其与重金属的体内运输和平衡有关。热休克蛋白(HSP)等蛋白类物质的产生是一种重要的体内平衡机制,其分子机理有待进一步研究。重金属耐性植物在这些环节产生了相关响应基因或功能蛋白质,分子克隆和转基因技术又使它们在污染治理上得到了初步的应用。  相似文献   

10.
11.
He H  Zhan J  He L  Gu M 《Protoplasma》2012,249(3):483-492
Nitric oxide (NO) is a ubiquitous signal molecule involved in multiple plant responses to environmental stress. In the recent years, the regulating role of NO on heavy metal toxicity in plants is realized increasingly, but knowledge of NO in alleviating aluminum (Al) toxicity is quite limited. In this article, NO homeostasis between its biosynthesis and elimination in plants is presented. Some genes involved in NO/Al network and their expressions are also introduced. Furthermore, the role of NO in Al toxicity and the functions in Al tolerance are discussed. It is proposed that Al toxicity may disrupt NO homeostasis, leading to endogenous NO concentration being lower than required for root elongation in plants. There are many evidences that pointed out that the exogenous NO treatments improve Al tolerance in plants through activating antioxidative capacity to eliminate reactive oxygen species. Most of the work with respect to NO regulating pathways and functions still has to be done in the future.  相似文献   

12.
Development of acid soils that limit crop production is an increasing problem worldwide. Many factors contribute to phytotoxicity of these soils, however, in acid soils with a high mineral content, aluminum (Al) is the major cause of toxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. Natural variation for Al tolerance has been identified in many crop species and in some crops tolerance to Al has been introduced into productive, well-adapted varieties. Aluminum tolerance appears to be a complex multigenic trait. Selection methodology remains a limiting factor in variety development as all methods have particular drawbacks. Molecular markers have been associated with Al tolerance genes or quantitative trait loci in Arabidopsis and in several crops, which should facilitate development of additional tolerant varieties. A variety of genes have been identified that are induced or repressed upon Al exposure. Most induced genes characterized so far are not specific to Al exposure but are also induced by other stress conditions. Ectopic over-expression of some of these genes has resulted in enhanced Al tolerance. Additionally, expression of genes involved in organic acid synthesis has resulted in enhanced production of organic acids and an associated increase in Al tolerance. This review summarizes the three main approaches that have been taken to develop crops with Al tolerance: recurrent selection and breeding, development of Al tolerant somaclonal variants and ectopic expression of transgenes to reduce Al uptake or limit damage to cells by Al.  相似文献   

13.
铝对植物毒害及植物抗铝作用机理   总被引:61,自引:3,他引:58  
综述了有关铝对植物的毒害及植物耐铝机理的研究成果。铝可以从植物的不同生物水平上影响植物的生长;不同植物耐受铝的能力不同,耐受性植物可在机体内形成各种耐受机制,以抵抗环境中铝的压力。这在受损土壤环境中的生态系统恢复具有应用前景。  相似文献   

14.
Role of salicylic acid in resistance to cadmium stress in plants   总被引:4,自引:0,他引:4  

Key message

We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity.

Abstract

Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.
  相似文献   

15.
根分泌的有机酸对土壤磷和微量元素的活化作用   总被引:47,自引:12,他引:35  
在养分胁迫下,尤其是缺磷条件下,许多植物可通过增加有机酸的分泌,作为其适应机制.讨论了营养胁迫条件下不同生态型植物根系分泌有机酸的种类,分析了不同生态型植物分泌的有机酸种类和数量之间的差异.结果表明,在缺磷条件下植物根系所分泌有机酸的种类和数量与它们所处的土壤环境关系密切.在营养胁迫条件下植物根系分泌的有机酸具有活化土壤磷、微量元素和缓解Al毒的功能;对有机酸活化土壤养分,解Al毒可能的作用机制进行了论述  相似文献   

16.
Aluminum (Al) toxicity, which is caused by the solubilization of Al3+ in acid soils resulting in inhibition of root growth and nutrient/water acquisition, is a serious limitation to crop production, because up to one-half of the world's potentially arable land is acidic. To date, however, no Al tolerance genes have yet been cloned. The physiological mechanisms of tolerance are somewhat better understood; the major documented mechanism involves the Al-activated release of Al-binding organic acids from the root tip, preventing uptake into the primary site of toxicity. In this study, a quantitative trait loci analysis of Al tolerance in Arabidopsis was conducted, which also correlated Al tolerance quantitative trait locus (QTL) with physiological mechanisms of tolerance. The analysis identified two major loci, which explain approximately 40% of the variance in Al tolerance observed among recombinant inbred lines derived from Landsberg erecta (sensitive) and Columbia (tolerant). We characterized the mechanism by which tolerance is achieved, and we found that the two QTL cosegregate with an Al-activated release of malate from Arabidopsis roots. Although only two of the QTL have been identified, malate release explains nearly all (95%) of the variation in Al tolerance in this population. Al tolerance in Landsberg erecta x Columbia is more complex genetically than physiologically, in that a number of genes underlie a single physiological mechanism involving root malate release. These findings have set the stage for the subsequent cloning of the genes responsible for the Al tolerance QTL, and a genomics-based cloning strategy and initial progress on this are also discussed.  相似文献   

17.
Crop productivity on acid soil is restricted by multiple abiotic stress factors. Aluminum (Al) tolerance seems to be a key to productivity on soil with a pH below 5.0, but other factors such as Mn toxicity and the deficiency of P, Ca and Mg also play a role. The development of Al-tolerant genotypes of rice is an urgent necessity for improving crop productivity in developing countries. Inhibition of root growth is a primary and early symptom of Al toxicity. The present study was conducted to identify genetic factors controlling the aluminum tolerance of rice. Several parameters related to Al tolerance, most importantly the relative root growth under Al stress versus non-stress conditions, were scored in 188 F3 selfed families from a cross between an Al-tolerant Vietnamese local variety, Chiembau, and an Al-susceptible improved variety, Omon269–65. The two varieties are both Oryza sativa ssp. indica, but showed a relatively high level of DNA polymorphism, permitting the assembly of an RFLP map consisting of 164 loci spanning 1,715.8 cM, and covering most of the rice genome. A total of nine different genomic regions on eight chromosomes have been implicated in the genetic control of root and shoot growth under aluminum stress. By far the greatest effects on aluminum tolerance were associated with the region near WG110 on chromosome 1. This region does not seem to correspond to most of the genes that have been mapped for aluminum tolerance in other species, nor do they correspond closely to one another. Most results, both from physiological studies and from molecular mapping studies, tend to suggest that aluminum tolerance is a complex multi-genic trait. The identification of DNA markers (such as WG110) that are diagnostic for aluminum tolerance in particular gene pools provides an important starting point for transferring and pyramiding genes that may contribute to the sustainable improvement of crop productivity in aluminum-rich soils. The isolation of genes responsible for aluminum tolerance is likely to be necessary to gain a comprehensive understanding of this complex trait. Received: 29 March 2000 / Accepted: 16 August 2000  相似文献   

18.
Aluminum (Al) is a limiting factor of crop yields on acidic soils. Ion aluminum (Al3+) acts primarily in plant root system retarding its growth and development, leading to the reduction of lateral roots number, and consequently the decrease of vegetal production. Most of coffee producing areas are located in acidic soils, which have Al3+ contents enough to damage plant development. Despite the advances in the understanding of physiological and genetic mechanisms of Al tolerance/susceptibility, few are known about Al ion action in coffee plants. This report describes the expression analysis of genes related to aluminum stress in germinating seeds of two cultivars of C. arabica (Catuaí Amarelo IAC 62 and Icatu Vermelho IAC 4045) when challenged with Al3+. In silico analyses of Brazilian Coffee Genome Project (BCGP) database were used to select genes previously found to be related with Al-stress. The expression profile of these genes in Catuaí and Icatu was evaluated through Quantitative PCR (qPCR). Based on our data, we suggest that both analyzed cultivars displays mechanisms of resistance or exclusion, which occurs outside the cell excluding Al3+ assimilation, and mechanisms of tolerance that occurs inside the cell after Al3+ absorption. The major difference is the timing of activation of each mechanism. While Catuaí tends to use resistance mechanisms in early stages of stress, Icatu uses tolerance strategies. In late stages, both cultivars seem to display tolerance mechanisms, but Icatu also displays Al-exclusion strategy.  相似文献   

19.
《遗传学报》2022,49(8):715-725
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.  相似文献   

20.
Silicon (Si), aluminum (Al), and iron (Fe) are the three most abundant minerals in soil; however, their effects on plants differ because they are beneficial, toxic, and essential to plant growth, respectively. High accumulation of silicon in the shoots helps some plants to overcome a range of biotic and abiotic stresses. However, plants vary in their ability to take up Si from the soil and load it into the xylem and so the accumulation of silicon varies greatly between plant species. Aluminum toxicity is characterized by a rapid inhibition of root elongation but some species and even genotypes within species can tolerate Al toxicity better than others. While the mechanisms controlling this tolerance in most of the more resistant species are poorly understood, some plants are able to detoxify Al externally and/or internally by complexation with ligands or by pH changes in the rhizosphere. Iron is taken up from the soil by two efficient mechanisms called Strategy I and Strategy II, which operate in distinct phylogenic groups. Strategy I plants increase soil Fe solubility by releasing protons and reductants/chelators, such as organic acids and phenolics, into the rhizosphere, while Strategy II plants are characterized by the secretion of ferric chelating substances (phytosiderophores) coupled with a specific Fe3+: chelate uptake system. In this review, the molecular mechanisms underlying root response to Si, Al, and Fe are described.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号