首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LFM W8 is a synthetic 15-residue lactoferricin derivative (H2N-EKCLRWQWEMRKVGG-COOH), corresponding to residues 16-30 of the mature murine lactoferrin protein except that the asparagine residue in position 8 of the native peptide is replaced with tryptophan. We have previously reported that the two tryptophan residues in positions 6 and 8 are of crucial importance for the antibacterial activity of many lactoferricin derivatives but, despite fulfilling this requirement, LFM W8 is inactive against Escherichia coli and Staphylococcus aureus. In order to solve this puzzle, a quantitative structure-antibacterial activity relationship study of synthetic LFM W8 derivatives was performed by replacing the glutamate residues in positions 1 and 9 with arginine or alanine, and the valine residue in position 13 with tyrosine. The results from the study were analyzed using multivariate data analysis. The derived mathematical model clustered the peptides into distinct groups which reflected their antibacterial activities, pointed out correlations between different structural parameters, highlighted the structural parameters that were important for antibacterial activity, and enabled us to predict the activity of a 15-residue bovine lactoferricin derivative. The results showed that net charge and micelle affinity, as determined from the ratio of alpha-helicity in sodium dodecyl sulfate micelles and in 1,1,1,3,3,3-hexafluoro-2-propanol, were the most important structural parameters affecting antibacterial activity. The most active derivative, LFM R1,9 W8 Y13, displayed a minimal inhibitory concentration of 10 and 12 microM against E. coli and S. aureus, respectively. This represented more than 50-fold and 40-fold increases in antibacterial activity, respectively, compared with LFM W8.  相似文献   

2.
Bovine lactoferricin is a 25-residue antibacterial peptide isolated after gastric cleavage of the iron transporting protein lactoferrin. A 15-residue fragment, FKCRRWQWRMKKLGA of this peptide sustains most of the antibacterial activity. In this truncated sequence, the two Trp residues are found to be essential for antibacterial activity. The anchoring properties of Trp, as have been observed in membrane proteins, are believed to be important for the interaction of Trp containing antibacterial peptides with bacterial cell membranes. We have investigated the molecular properties which make Trp important for the antibacterial activity of the 15-residue peptide by replacing Trp with natural and unnatural aromatic amino acids. This series of peptides was tested for antibacterial activity against Echerichia coli and Staphylococcus aureus. We found that neither the hydrogen bonding ability nor the amphipathicity of the indole system are essential properties for the effect of Trp on the antibacterial activity of the peptides. Replacement of Trp with residues containing aromatic hydrocarbon side chains gave the most active peptides. We propose that aromatic hydrocarbon residues are able to position themselves deeper into the bacterial cell membrane, making the peptide more efficient in disrupting the bacterial cell membrane. From our results the size, shape and aromatic character of Trp seem to be the most important features for the activity of this class of Trp containing antibacterial peptides.  相似文献   

3.
牛乳铁蛋白素是牛乳铁蛋白经胃蛋白酶水解后释放出来的一段小肽,是牛乳铁蛋白的活性中心。通过对不同动物来源乳铁蛋白素活性的研究发现牛乳铁蛋白素的抗菌活性最强。进一步的丙氨酸突变实验研究表明,在牛乳铁蛋白素活性最强的15个氨基酸序列中,色氨酸在抗菌过程中起着重要作用。牛乳铁蛋白素正是因为含有两个色氨酸,其活性才会比只含有一个色氨酸的其它来源的乳铁蛋白素活性要高。很多实验室围绕着牛乳铁蛋白素中的色氨酸、碱性氨基酸和其他一些芳香族氨基酸展开了一系列的突变研究,本文综述了这些研究及在氨基酸改变后活性的变化,为以后研究及开发牛乳铁蛋白素提供理论基础。  相似文献   

4.
The iron-binding protein lactoferrin is a multifunctional protein that has antibacterial, antifungal, antiviral, antitumour, anti-inflammatory, and immunoregulatory properties. All of these additional properties appear to be related to its highly basic N-terminal region. This part of the protein can be released in the stomach by pepsin cleavage at acid pH. The 25-residue antimicrobial peptide that is released is called lactoferricin. In this work, we review our knowledge about the structure of the peptide and attempt to relate this to its many functions. Microcalorimetry and fluorescence spectroscopy data regarding the interaction of the peptide with model membranes show that binding to net negatively charged bacterial and cancer cell membranes is preferred over neutral eukaryotic membranes. Binding of the peptide destabilizes the regular membrane bilayer structure. Residues that are of particular importance for the activity of lactoferricin are tryptophan and arginine. These two amino acids are also prevalent in "penetratins", which are regions of proteins or synthetic peptides that can spontaneously cross membranes and in short hexapeptide antimicrobial peptides derived through combinatorial chemistry. While the antimicrobial, antifungal, antitumour, and antiviral properties of lactoferricin can be related to the Trp/Arg-rich portion of the peptide, we suggest that the anti-inflammatory and immunomodulating properties are more related to a positively charged region of the molecule, which, like the alpha- and beta-defensins, may act as a chemokine. Few small peptides are involved in as wide a range of host defense functions as bovine and human lactoferricin.  相似文献   

5.
This review focuses on important structural features affecting the antimicrobial activity of 15-residue derivatives of lactoferricins. Our investigations are based on an alanine-scan of a 15-residue bovine lactoferricin derivative that revealed the absolute necessity of two tryptophan residues for antimicrobial activity. This "tryptophan-effect" was further explored in homologous derivatives of human, caprine, and porcine lactoferricins by the incorporation of one additional tryptophan residue, and by increasing the content of tryptophan in the bovine derivative to five residues. Most of the resulting peptides display a substantial increase in antimicrobial activity. To identify which molecular properties make tryptophan so effective, a series of bovine lactoferricin derivatives were prepared containing non-encoded unnatural aromatic amino acids, which represented various aspects of the physicochemical nature of tryptophan. The results clearly demonstrate that tryptophan is not unique since most of the modified peptides were of higher antimicrobial potency than the native peptide. The size and three-dimensional shape of the inserted "super-tryptophans" are the most important determinants for the high antimicrobial activity of the modified peptides. This review also describes the use of a "soft-modeling" approach in order to identify important structural parameters affecting the antimicrobial activity of modified 15-residue murine lactoferricin derivatives. This QSAR-study revealed that the net charge, charge asymmetry, and micelle affinity of the peptides were the most important structural parameters affecting their antimicrobial activity.  相似文献   

6.
Antibacterial activity of 15-residue lactoferricin derivatives.   总被引:3,自引:0,他引:3  
Lactoferricins are a class of antibacterial peptides isolated after gastric-pepsin digest of the mammalian iron-chelating-protein lactoferrin. For investigation of antibacterial activity, we prepared short synthetic derivatives of bovine, human, caprine, murine and porcine lactoferricins with 15-amino-acid residues of high sequence homology. The peptides corresponded to amino-acid residues 17-31 of the mature bovine lactoferrin. Only the bovine and caprine derivatives displayed measurable antibacterial activity, with the bovine one having a minimal inhibitory concentration of 24 microM and being 10 times more active than the caprine one against Escherichia coli. An alanine-scan of the bovine lactoferricin derivative was performed to identify specific amino acids that were important for the antibacterial activity. We found that neither of the two tryptophan residues (Trp 6 and Trp 8) present in the bovine lactoferricin derivative could be replaced by alanine without a major loss of antibacterial activity. The other lactoferricin derivatives tested contained only one tryptophan residue (Trp 6). Modified human, caprine and porcine lactoferricin derivatives containing two tryptophan residues (Trp 6 and Trp 8) displayed minimal inhibitory concentrations of 74, 174 and 219 microM, respectively, which represented up to a six-fold increase in antibacterial activity. The alanine-scan also revealed that the antibacterial activity was increased when acetamidomethyl-protected cysteine and unprotected glutamine (Cys 3 and Gln 7) were replaced with alanine. Only the bovine lactoferricin derivative and a few of its alanine-modified derivatives displayed measurable activity against Staphylococcus aureus.  相似文献   

7.
The powerful antimicrobial properties of bovine lactoferricin (LfcinB) make it attractive for the development of new antimicrobial agents. An 11-residue linear peptide portion of LfcinB has been reported to have similar antimicrobial activity to lactoferricin itself, but with lower hemolytic activity. The membrane-binding and membrane-perturbing properties of this peptide were studied together with an amidated synthetic version with an added disulfide bond, which was designed to confer increased stability and possibly activity. The antimicrobial and cytotoxic properties of the peptides were measured against Staphylococcus aureus and Escherichia coli and by hemolysis assays. The peptides were also tested in an anti-cancer assay against neuroblastoma cell lines. Vesicle disruption caused by these LfcinB derivatives was studied using the fluorescent reporter molecule calcein. The extent of burial of the two Trp residues in membrane mimetic environments were quantitated by fluorescence. Finally, the solution NMR structures of the peptides bound to SDS micelles were determined to provide insight into their membrane bound state. The cyclic peptide was found to have greater antimicrobial potency than its linear counterpart. Consistent with this property, the two Trp residues of the modified peptide were suggested to be embedded deeper into the membrane. Although both peptides adopt an amphipathic structure without any regular alpha-helical or beta-sheet conformation, the 3D-structures revealed a clearer partitioning of the cationic and hydrophobic faces for the cyclic peptide.  相似文献   

8.
Antimicrobial peptides bovine lactoferricin (LfcinB) and human lactoferricin (LfcinH) are produced from the respective lactoferrin, but are more active than their precursors. Despite sequence homology, the bovine peptide and its derivatives are more active than their human homologs. Such differences between not only the peptides and their precursor but also between the bovine and the human peptides could relate to structural differences. Upon sequence alignment of both peptides with their parental proteins, the structural differences observed between the bovine lactoferrin (BLf) and LfcinB were also found between the human lactoferrin (HLf) and the LfcinH. The helical structures in HLf are replaced by beta-strands separated by a strong turn in LfcinH suggesting an antiparallel beta-sheet structure similar to LfcinB. MIC assays with HLP-2 and BLP-2, 11-residue peptides derived from the active core of both Lfcins, against Escherichia coli, showed that the bovine derivative, BLP-2, is more active than its human homolog HLP-2. Both 3D models for HLP-2 and BLP-2 showed that the beta-strand is centred between the aromatic residues giving both side chains the same orientations. The displacement towards the N-terminus observed for the beta-strand in HLP-2, compared with its central location in BLP-2, could be less favourable to membrane interaction and therefore responsible for the decrease in activity. Such a model suggests for LfcinH a mechanism similar to the one observed for LfcinB, where the absence of long-range interaction, present in lactoferrin, destabilises the first alpha helix, as observed in solution and, upon interaction with the membrane, could result in the formation of a beta-strand, as observed in the presence of LPS. The location of the beta-strand in relation to the positive charges, seems to define the efficiency of the activity of the peptide and may explain the difference in activity obtained between HLP-2 and BLP-2.  相似文献   

9.
According to the bias of codon utilization of Pichia methanolica, a fragment encoding bovine lactoferricin has been cloned and expressed in the P. methanolica under the control of the alcohol oxidase promoter, which was followed by the Saccharomyces cerevisiae alpha-factor signal peptide. The alpha-factor signal peptide efficiently directed the secretion of bovine lactoferricin from the recombinant yeast cell. The recombinant bovine lactoferricin appears to be successfully expressed, as it displays antibacterial activity (antibacterial assay). Moreover, the identity of the recombinant product was estimated by Tricine-SDS-PAGE.  相似文献   

10.
The consequences of selective addition or deletion of polar amino acids in a 13-residue antibacterial peptide PKLLKTFLSKWIG on structure, membrane binding and biological activities have been investigated. The variants generated are (a) S and T residues replaced by K, (b) S and T residues deleted individually and together, (c) introduction of two additional K and (d) deletion of L and L with T. In the aqueous environment all the peptides were unordered. In trifluoroethanol, the spectra of peptides belonging to groups (a-c) suggest distorted helical conformation. Peptides in group (d) appear to adopt beta-sheet conformation. The peptides bind to zwitterionic and negatively charged lipid vesicles, although to different extents. With the exception of peptides in group (d), all the other peptides exhibited comparable antibacterial activity against Escherichia coli and Staphylococcus aureus. However, the changes made in the peptides in groups (a-c) resulted in reduction of hemolytic activity compared to the parent peptide. Extent of binding to lipid vesicles composed of phosphatidylcholine and cholesterol appears to correlate with hemolytic activity. It appears that polar and charged residues play a major role in modulating the biological activities of the 13-residue peptide PKLLKTFLSKWIG. The 11-residue peptide-like PKLLKFLKWIG has selective antibacterial activity. Thus, by judicious engineering it should be possible to generate short peptides with selective antibacterial activity.  相似文献   

11.
As potential therapeutic agents, antimicrobial peptides with shorter length and simpler amino acid composition can be better candidates for clinical and commercial development. Here, we attempted de novo design of short (5- to 11-residue) antimicrobial peptides with three kinds of amino acids. Amphipathic helical properties were conferred by using leucines and lysines and two tryptophan residues were positioned at the critical amphipathic interface between the hydrophilic ending side and the hydrophobic starting side. According to this specified rule, 12 model peptides were generated and their helical propensity was confirmed by circular dichroism spectroscopy. Antimicrobial and hemolytic activities were compared with those of the known 12-residue peptide agent, omiganan, which is currently under therapeutic and commercial development. Antimicrobial activities against Gram-negative and Gram-positive bacteria, including a multi-drug resistant strain, were observed for certain 7- to 11-residue models. Among them, the most potent activity was found for a 9-residue peptide (L5K2W2), although it also had severe hemolytic activity. Alternatively, an 11-residue peptide (L4K5W2) with little hemolytic activity was potentially the most useful agent, as it showed higher antibacterial activity than omiganan. These results not only suggest useful candidates for novel antibiotic development, but also provide an efficient strategy to design such peptides.  相似文献   

12.
Mupirocin is the first-line topical antibacterial drug for treating skin infections caused primarily by meticillin-resistant Staphylococcus aureus (MRSA). Its widespread use since its introduction more than 30 years ago has resulted in the global emergence of mupirocin-resistant strains of MRSA. Antimicrobial peptides (AMPs) are a promising class of antibacterial compounds that can potentially be developed to replace mupirocin due to their rapid membrane-targeting bactericidal mode of action and predicted low propensity for resistance development. Herein, we conducted and compared the antibacterial activities of 61 AMPs between 3 and 11 residues in length reported in the literature over the past decade against mupirocin-resistant MRSA. The most potent AMP, 11-residue peptide 50, was selected and tested against a panel of clinical isolates followed by a time-kill and a human dermal keratinocyte cytotoxicity assay. Lastly, peptide 50 was formulated into a topical spray which showed strong in vitro bactericidal effects against mupirocin-resistant MRSA. Our results strongly suggest that peptide 50 has the potential to be further developed into a new class of topical antibacterial agent for treating drug-resistant MRSA skin infections.  相似文献   

13.
The antibacterial activity against Escherichia coli and Staphylococcus aureus has been studied for a number of modified pentadecapeptides based on lactoferricins of different origin. The peptides were classified by multivariate methods and quantitative structure-activity relationships (QSAR) were developed using theoretically derived variables for the amino acids. For the modified peptides based on bovine lactoferricin (LFB) a model was calculated and used for prediction of new peptides that were then tested for antibacterial activity in order to improve peptide activity and to check the validity of the model. Models were also calculated including lactoferricins of different origin. Theories of the mechanism of action of the peptides are briefly discussed.  相似文献   

14.
Seminalplasmin (SPLN) is a 47-residue protein isolated from bovine seminal plasma having potent antimicrobial activity against a broad spectrum of microorganisms. SPLN, also known as caltrin, acts as a calcium transport regulator in bovine sperms. Analysis of the sequence of SPLN reveals a 27-residue stretch with the sequence SLSRYAKLANRLANPKLLETFLSKWIG more hydrophobic than the rest of the protein. It is demonstrated that a synthetic peptide corresponding to this 27-residue segment has antimicrobial activity comparable to that of SPLN. It does not exhibit hemolytic activity at concentrations where antibacterial activity is observed. Since P27 can be conveniently obtained in large amounts by chemical synthesis, it could serve not only as a starting compound to obtain peptides with improved antibacterial activity but also to understand the role of SPLN in reproductive physiology.  相似文献   

15.
LFB (FKCRRWQWRMKKLGA-HN2) is a 15-residue linear antimicrobial peptide derived from bovine lactoferricin, which has antimicrobial activity similar to that of the intact 25-residue disulfide-cyclized peptide. Previous alanine-scan studies, in which all of the residues in LFB were individually replaced with Ala, showed that the 2 tryptophan (Trp) residues of LFB were crucial to its antimicrobial activity. When either Trp6 or Trp8 was replaced with Ala (LFBA6 and LFBA8, respectively), these 2 peptides were almost devoid of antimicrobial activity. We determined the structures of LFB, LFBA6, and LFBA8 bound to membrane-mimetic SDS micelles using NMR spectroscopy, and studied their interactions with different phospholipid-model membranes. The membrane interactions of LFB exhibited little correlation with its antimicrobial activity, suggesting that the mechanism of action of LFB involves intracellular targets. However, the much higher antimicrobial activity of LFB compared with LFBA6 and LFBA8 might result, in part, from the formation of energetically favorable cation-pi interactions observed only in LFB. Information about the importance of Arg and Trp cation-pi interactions will provide insight for the future design of potent antimicrobial peptidomimetics.  相似文献   

16.
17.
New indolicidin analogues with potent antibacterial activity.   总被引:2,自引:0,他引:2  
Indolicidin is a 13-residue antimicrobial peptide amide, ILPWKWPWWPWRR-NH2, isolated from the cytoplasmic granules of bovine neutrophils. Indolicidin is active against a wide range of microorganisms and has also been shown to be haemolytic and cytotoxic towards erythrocytes and human T lymphocytes. The aim of the present paper is two-fold. First, we examine the importance of tryptophan in the antibacterial activity of indolicidin. We prepared five peptide analogues with the format ILPXKXPXXPXRR-NH2 in which Trp-residues 4,6,8,9,11 were replaced in all positions with X = a single non-natural building block; N-substituted glycine residue or nonproteinogenic amino acid. The analogues were tested for antibacterial activity against both Staphylococcus aureus American type culture collection (ATCC) 25923 and Escherichia coli ATCC 25922. We found that tryptophan is not essential in the antibacterial activity of indolicidin, and even more active analogues were obtained by replacing tryptophan with non-natural aromatic amino acids. Using this knowledge, we then investigated a new principle for improving the antibacterial activity of small peptides. Our approach involves changing the hydrophobicity of the peptide by modifying the N-terminus with a hydrophobic non-natural building block. We prepared 22 analogues of indolicidin and [Phe(4,6,8,9,11)] indolicidin, 11 of each, carrying a hydrophobic non-natural building block attached to the N-terminus. Several active antibacterial analogues were identified. Finally, the cytotoxicity of the analogues against sheep erythrocytes was assessed in a haemolytic activity assay. The results presented here suggest that modified analogues of antibacterial peptides, containing non-natural building blocks, are promising lead structures for developing future therapeutics.  相似文献   

18.
Piscidins are linear, amphipathic, antimicrobial peptides (AMPs) with broad, potent, activity spectrum. Piscidins and other members of the piscidin family appear to comprise the most common group of AMPs in teleost fish. All piscidins and related members of the piscidin family described to date are 18–26 amino acids long. We report here the isolation of a novel 5329.25 Da, 44-residue (FFRHLFRGAKAIFRGARQGXRAHKVVSRYRNRDVPETDNNQEEP) antimicrobial peptide from hybrid striped bass (Morone chrysops female x M. saxatilis male). We have named this peptide “piscidin 4” since it has considerable (to > 65%) N-terminal sequence homology to piscidins 1–3 and this distinctive, 10 to 11-residue, N-terminus is characteristic of piscidins. The native peptide has a modified amino acid at position 20 that, based upon mass spectrometry data, is probably a hydroxylated tryptophan. Synthetic piscidin 4 (with an unmodified tryptophan at position 20) has similar antibacterial activity to that of the native peptide. Piscidin 4 demonstrates potent, broad-spectrum, antibacterial activity against a number of fish and human pathogens, including multi-drug resistant bacteria. Its potent antimicrobial activity suggests that piscidin 4 plays a significant role in the innate defense system of hybrid striped bass.  相似文献   

19.
Injection of heat-killed bacteria into larvae of the large tenebrionid beetle Zophobas atratus (Insecta, Endopterygota, Coleoptera) results in the appearance in the hemolymph of a potent antibacterial activity as evidenced by a plate growth inhibition assay. We have isolated three peptides (A-C) from this immune hemolymph which probably account for most of this activity. Their primary structures were established by a combination of peptide sequencing and molecular mass determination by mass spectrometry. Peptide A, which is bactericidal against Gram-negative cells, is a 74-residue glycine-rich molecule with no sequence homology to known peptides. We propose the name coleoptericin for this novel inducible antibacterial peptide. Peptides B and C are isoforms of a 43-residue peptide which contains 6 cysteines and shows significant sequence homology to insect defensins, initially reported from dipteran insects. This peptide is active against Gram-positive bacteria. The results are discussed in connection with recent studies on inducible antibacterial peptides present in the three other major orders of the endopterygote clade of insects: the Lepidoptera, Diptera, and Hymenoptera.  相似文献   

20.
We have investigated the effects of charge and lipophilicity on the antibacterial activity of an undecapeptide (FKCRRWQWRMK) derived from the sequence of bovine lactoferricin. We prepared ten analogues that were modified by the incorporation of Ala, Tyr, Trp, Met and Arg residues, which are amino acids known to be important for the antibacterial activity of longer derivatives of lactoferricins. All undecapeptides contained the native Trp residues in positions 6 and 8, and the Arg residues in positions 5 and 9. Generally, the Gram-positive bacterium Staphylococcus aureus was more susceptible to these undecapeptides than the Gram-negative bacteria, and a higher antibacterial activity was observed against Escherichia coli than against Pseudomonas aeruginosa. The only exception was the peptide Undeca 9 (RRWYRWAWRMR-NH2), which was almost equally active against all three test strains, displaying minimal inhibitory concentrations of 10 microg/ml (5.8 microM), 7.5 microg/ml (4.4 microM) and 5 microg/ml (2.9 microM) against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The peptides Undeca 6 (YRAWRWAWRWR-NH2) and Undeca 7 (YRMWRWAWRWR-NH2) were the two most active undecapeptides against Staphylococcus aureus, both displaying a minimal inhibitory concentration of 2.5 microg/ml (1.5 microM). The study showed that a level was reached in which undecapeptides having a net charge above +4 and containing three or four Trp residues all displayed a high antibacterial activity. All undecapeptides prepared were essentially non-haemolytic, but undecapeptides containing more than three Trp residues displayed 50% haemolysis of human red blood cells at concentrations above 400 microg/ml (>230 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号