首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   15篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2012年   9篇
  2011年   6篇
  2010年   8篇
  2009年   5篇
  2008年   11篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   12篇
  2001年   3篇
  2000年   8篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1981年   3篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
  1969年   3篇
  1965年   1篇
  1955年   2篇
  1954年   1篇
  1936年   2篇
  1918年   1篇
排序方式: 共有203条查询结果,搜索用时 24 毫秒
1.
2.
3.
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.  相似文献   
4.
Exposure to herbal remedies containing the carcinogen aristolochic acid (AA) has been widespread in some regions of the world. Rare A→T TP53 mutations were recently discovered in AA-associated urothelial cancers. The near absence of these mutations among all other sequenced human tumors suggests that they could be biologically silent. There are no cell banks with established lines derived from human tumors with which to explore the influence of the novel mutants on p53 function and cellular behavior. To investigate their impact, we generated isogenic mutant clones by integrase-mediated cassette exchange at the p53 locus of platform (null) murine embryonic fibroblasts and kidney epithelial cells. Common tumor mutants (R248W, R273C) were compared with the AA-associated mutants N131Y, R249W, and Q104L. Assays of cell proliferation, migration, growth in soft agar, apoptosis, senescence, and gene expression revealed contrasting outcomes on cellular behavior following introduction of N131Y or Q104L. The N131Y mutant demonstrated a phenotype akin to common tumor mutants, whereas Q104L clone behavior resembled that of cells with wild-type p53. Wild-type p53 responses were restored in double-mutant cells harboring N131Y and N239Y, a second-site rescue mutation, suggesting that pharmaceutical reactivation of p53 function in tumors expressing N131Y could have therapeutic benefit. N131Y is likely to contribute directly to tumor phenotype and is a promising candidate biomarker of AA exposure and disease. Rare mutations thus do not necessarily point to sites where amino acid exchanges are phenotypically neutral. Encounter with mutagenic insults targeting cryptic sites can reveal specific signature hotspots.  相似文献   
5.
Woody climbers or, ‘lianas’, are one of the features that characterise rainforests. They contribute substantially to plant diversity and leaf biomass which makes them a potentially important food source for herbivores. Here, we focus on insect herbivores, folivores in particular, to show how disparities in the quantitative and qualitative availability of leaves between lianas and trees may differentially influence insect folivory and the herbivore communities themselves. We develop a conceptual model and show that lianas in general have lower structural and chemical defences, a greater nutritional profile and a preferable phenology in comparison with trees, which, contrary to our expectations, has led to assemblages of more‐specialised insects. The impacts this has on higher trophic levels and broader ecological networks, however, are poorly known. We show through a study of four tropical floras from different biogeographic realms that lianas are likely to be a target for a wide range of insect herbivore taxa as they are a phylogenetically diverse group and increase diversity of higher taxa at local scales. This, in combination with their highly palatable leaves, may also make them a suitable temporary food source for insects during times when preferred host plants are scarce. This phenomenon has been observed in mammalian herbivores but awaits investigation in insects as does the effects this may have on survival and fitness. Apparent recent increases in liana abundances in some forests, likely due to climate change, makes understanding their role in supporting and maintaining biodiversity an increasingly important and necessary challenge. Since trees or saplings have usually been the subject of studies on insect herbivory, major knowledge gaps remain about the ways in which lianas contribute to, support and maintain the ecosystems in which they exist. We use our conceptual model to guide future research directions and express the necessity for caution when extrapolating explanations of herbivory derived from data on trees to growth forms with fundamentally different ecologies.  相似文献   
6.
7.
A multi-year unusual mortality event (UME) involving primarily common bottlenose dolphins (Tursiops truncates) was declared in the northern Gulf of Mexico (GoM) with an initial start date of February 2010 and remains ongoing as of August 2014. To examine potential changing characteristics of the UME over time, we compared the number and demographics of dolphin strandings from January 2010 through June 2013 across the entire GoM as well as against baseline (1990-2009) GoM stranding patterns. Years 2010 and 2011 had the highest annual number of stranded dolphins since Louisiana’s record began, and 2011 was one of the years with the highest strandings for both Mississippi and Alabama. Statewide, annual numbers of stranded dolphins were not elevated for GoM coasts of Florida or Texas during the UME period. Demographic, spatial, and temporal clusters identified within this UME included increased strandings in northern coastal Louisiana and Mississippi (March-May 2010); Barataria Bay, Louisiana (August 2010-December 2011); Mississippi and Alabama (2011, including a high prevalence and number of stranded perinates); and multiple GoM states during early 2013. While the causes of the GoM UME have not been determined, the location and magnitude of dolphin strandings during and the year following the 2010 Deepwater Horizon oil spill, including the Barataria Bay cluster from August 2010 to December 2011, overlap in time and space with locations that received heavy and prolonged oiling. There are, however, multiple known causes of previous GoM dolphin UMEs, including brevetoxicosis and dolphin morbillivirus. Additionally, increased dolphin strandings occurred in northern Louisiana and Mississippi before the Deepwater Horizon oil spill. Identification of spatial, temporal, and demographic clusters within the UME suggest that this mortality event may involve different contributing factors varying by location, time, and bottlenose dolphin populations that will be better discerned by incorporating diagnostic information, including histopathology.  相似文献   
8.
9.
Listeria monocytogenes is a pathogenic bacterium that moves within infected cells and spreads directly between cells by harnessing the cell's dendritic actin machinery. This motility is dependent on expression of a single bacterial surface protein, ActA, a constitutively active Arp2,3 activator, and has been widely studied as a biochemical and biophysical model system for actin-based motility. Dendritic actin network dynamics are important for cell processes including eukaryotic cell motility, cytokinesis, and endocytosis. Here we experimentally altered the degree of ActA polarity on a population of bacteria and made use of an ActA-RFP fusion to determine the relationship between ActA distribution and speed of bacterial motion. We found a positive linear relationship for both ActA intensity and polarity with speed. We explored the underlying mechanisms of this dependence with two distinctly different quantitative models: a detailed agent-based model in which each actin filament and branched network is explicitly simulated, and a three-state continuum model that describes a simplified relationship between bacterial speed and barbed-end actin populations. In silico bacterial motility required a cooperative restraining mechanism to reconstitute our observed speed-polarity relationship, suggesting that kinetic friction between actin filaments and the bacterial surface, a restraining force previously neglected in motility models, is important in determining the effect of ActA polarity on bacterial motility. The continuum model was less restrictive, requiring only a filament number-dependent restraining mechanism to reproduce our experimental observations. However, seemingly rational assumptions in the continuum model, e.g. an average propulsive force per filament, were invalidated by further analysis with the agent-based model. We found that the average contribution to motility from side-interacting filaments was actually a function of the ActA distribution. This ActA-dependence would be difficult to intuit but emerges naturally from the nanoscale interactions in the agent-based representation.  相似文献   
10.
Human papillomavirus (HPV) is causative for a new and increasing form of head and neck squamous cell carcinomas (HNSCCs). Although localised HPV-positive cancers have a favourable response to radio-chemotherapy (RT/CT), the impact of HPV in advanced or metastatic HNSCC remains to be defined and targeted therapeutics need to be tested for cancers resistant to RT/CT. To this end, we investigated the sensitivity of HPV-positive and -negative HNSCC cell lines to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), which induces tumour cell-specific apoptosis in various cancer types. A clear correlation was observed between HPV positivity and resistance to TRAIL compared with HPV-negative head and neck cancer cell lines. All TRAIL-resistant HPV-positive cell lines tested were sensitised to TRAIL-induced cell death by treatment with bortezomib, a clinically approved proteasome inhibitor. Bortezomib-mediated sensitisation to TRAIL was associated with enhanced activation of caspase-8, -9 and -3, elevated membrane expression levels of TRAIL-R2, cytochrome c release and G2/M arrest. Knockdown of caspase-8 significantly blocked cell death induced by the combination therapy, whereas the BH3-only protein Bid was not required for induction of apoptosis. XIAP depletion increased the sensitivity of both HPV-positive and -negative cells to TRAIL alone or in combination with bortezomib. In contrast, restoration of p53 following E6 knockdown in HPV-positive cells had no effect on their sensitivity to either single or combination therapy, suggesting a p53-independent pathway for the observed response. In summary, bortezomib-mediated proteasome inhibition sensitises previously resistant HPV-positive HNSCC cells to TRAIL-induced cell death through a mechanism involving both the extrinsic and intrinsic pathways of apoptosis. The cooperative effect of these two targeted anticancer agents therefore represents a promising treatment strategy for RT/CT-resistant HPV-associated head and neck cancers.Head and neck squamous cell carcinoma (HNSCC) represents the sixth most common cancer worldwide.1 While the overall incidence of HNSCC, traditionally associated with tobacco or alcohol consumption, is declining, a subset of oropharyngeal cancers caused by infection with high-risk types of human papillomavirus (HPV) has risen significantly.2,3 Transformation upon HPV infection occurs mainly because of inactivation of the p53 and retinoblastoma tumour suppressor proteins mediated by the viral oncoproteins E6 and E7, respectively.4HPV-positive (HPV+) cancers represent a distinct subset of HNSCC in terms of biology and clinical behaviour. In general, they are characterised by better overall survival and an improved response to conventional radio-chemotherapy (RT/CT) compared with HPV-negative (HPV) cancers.5,6 To further minimise treatment-related toxicity without compromising outcome, there have been suggestions of treatment de-escalation in conjunction with targeted therapies.7The novel anticancer agent TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) selectively kills several types of malignant cell lines with little effect on normal cells.8 Recombinant TRAIL or monoclonal antibodies targeting TRAIL receptors (TRAIL-Rs) are currently being tested in phase I/II clinical trials for patients with advanced tumours.9,10 TRAIL induces cell death by binding to TRAIL-R1 or TRAIL-R2, resulting in receptor oligomerisation and formation of the death-inducing signalling complex (DISC)11 and activation of initiator caspase-8.12 Caspase-8 directly activates effector caspase-3 to induce apoptosis through the type I pathway or cleaves the BH3-only protein Bid, generating tBid. This type II pathway involves an amplification loop through the intrinsic pathway of apoptosis characterised by cytochrome c release from the mitochondria, activation of initiator caspase-9 and ultimately caspase-3.13Despite its tumour-selective activity, various cancer cell lines remain resistant to TRAIL, limiting the clinical potential of TRAIL-based monotherapies. Many recent studies focus on combination strategies with other agents to sensitise resistant cells to TRAIL.14 The proteasome inhibitor bortezomib is an FDA-approved drug for the treatment of multiple myeloma, but has shown only little single-agent activity in solid malignancies such as HNSCC while being effective in combination with other treatment options.15, 16, 17 Combining bortezomib with TRAIL-R agonists produced a synergistic cytotoxic effect in various types of cancers. Potential mechanisms underlying sensitisation to TRAIL-induced apoptosis include inhibition of NF-κB signalling, stabilisation of BH3-only proteins, p53 or p21, upregulation of TRAIL-Rs and enhanced stability of caspase-8.18, 19, 20, 21, 22, 23, 24, 25, 26So far, little data is available on the therapeutic potential of TRAIL alone or in combination with bortezomib in HNSCC or other HPV+ related cancers. Treatment with the proteasome inhibitor MG132 sensitised TRAIL-resistant HPV+ cervical cancer cells to TRAIL through p53-dependent upregulation of TRAIL-Rs and inactivation of XIAP.27 Overexpression of E6 was shown to protect colon cancer cells from death receptor-induced apoptosis by affecting the stability of the DISC, indicating a functional link between the presence of E6 and TRAIL signalling.28In this study, we tested the response of HPV+ and HPV HNSCC cells to treatment with TRAIL alone or combined with bortezomib, revealing a clear pattern of sensitivity to TRAIL depending on HPV status and a synergistic effect when combined with bortezomib. In addition, we identified some of the proteins and pathways involved in the response to TRAIL/bortezomib in HNSCCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号