首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
乳铁素——来源于乳铁蛋白的多功能抗菌肽   总被引:2,自引:0,他引:2  
乳铁素是乳铁蛋白在酸性环境条件下经胃蛋白酶水解从N-端释放的多功能活性多肽.乳铁素不仅保持了完整乳铁蛋白的大部分生物学活性,而且乳铁素的某些生物学活性比乳铁蛋白更强.乳铁素具有抗细菌、抗真菌、抗病毒、抗肿瘤、免疫调节和抗炎症等多种生物学功能.然而,乳铁素的生物学作用大部分是通过体外试验发现和验证的,乳铁素的体内生物学效应还需更多的试验加以评价和证实,现代基因组学和蛋白组学分析方法和技术将有助于深入了解乳铁素体内生物学作用机制.本文就乳铁素的结构、生物学功能及其作用机制、制备和应用前景作一综述.  相似文献   

2.
Antimicrobial peptides have been extensively studied in order to elucidate their mode of action. Most of these peptides have been shown to exert a bactericidal effect on the cytoplasmic membrane of bacteria. Lactoferricin is an antimicrobial peptide with a net positive charge and an amphipatic structure. In this study we examine the effect of bovine lactoferricin (lactoferricin B; Lfcin B) on bacterial membranes. We show that Lfcin B neither lyses bacteria, nor causes a major leakage from liposomes. Lfcin B depolarizes the membrane of susceptible bacteria, and induces fusion of negatively charged liposomes. Hence, Lfcin B may have additional targets responsible for the antibacterial effect.  相似文献   

3.
Synthetic peptides derived from human and bovine lactoferricin, as well as tritrpticin sequences, were assayed for antimicrobial activity against wild-type Escherichia coli and LPS mutant strains. Antimicrobial activity was only obtained with peptides derived from the bovine lactoferricin sequence and peptides corresponding to chimeras of human and bovine sequences. None of the peptides corresponding to different regions of native human lactoferricin showed any antimicrobial activity. The results underline the importance of the content of tryptophan and arginine residues, and the relative location of these residues for antimicrobial activity. Results obtained for the same assays performed with LPS mutants suggest that lipid A is not the main binding site for lactoferricin which interacts first with the negative charges present in the inner core. Computer modelling of the most active peptides led to a model in which positively charged residues of the cationic peptide interact with negative charges carried by the LPS to disorganise the structure of the outer membrane and facilitate the approach of tryptophan residues to the lipid A in order to promote hydrophobic interactions.  相似文献   

4.
Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.  相似文献   

5.
Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.  相似文献   

6.
The innate immunity factor lactoferrin harbours two antimicrobial moieties, lactoferricin and lactoferrampin, situated in close proximity in the N1 domain of the molecule. Most likely they cooperate in many of the beneficial activities of lactoferrin. To investigate whether chimerization of both peptides forms a functional unit we designed a chimerical structure containing lactoferricin amino acids 17-30 and lactoferrampin amino acids 265-284. The bactericidal activity of this LFchimera was found to be drastically stronger than that of the constituent peptides, as was demonstrated by the need for lower dose, shorter incubation time and less ionic strength dependency. Likewise, strongly enhanced interaction with negatively charged model membranes was found for the LFchimera relative to the constituent peptides. Thus, chimerization of the two antimicrobial peptides resembling their structural orientation in the native molecule strikingly improves their biological activity.  相似文献   

7.
The powerful antimicrobial properties of bovine lactoferricin (LfcinB) make it attractive for the development of new antimicrobial agents. An 11-residue linear peptide portion of LfcinB has been reported to have similar antimicrobial activity to lactoferricin itself, but with lower hemolytic activity. The membrane-binding and membrane-perturbing properties of this peptide were studied together with an amidated synthetic version with an added disulfide bond, which was designed to confer increased stability and possibly activity. The antimicrobial and cytotoxic properties of the peptides were measured against Staphylococcus aureus and Escherichia coli and by hemolysis assays. The peptides were also tested in an anti-cancer assay against neuroblastoma cell lines. Vesicle disruption caused by these LfcinB derivatives was studied using the fluorescent reporter molecule calcein. The extent of burial of the two Trp residues in membrane mimetic environments were quantitated by fluorescence. Finally, the solution NMR structures of the peptides bound to SDS micelles were determined to provide insight into their membrane bound state. The cyclic peptide was found to have greater antimicrobial potency than its linear counterpart. Consistent with this property, the two Trp residues of the modified peptide were suggested to be embedded deeper into the membrane. Although both peptides adopt an amphipathic structure without any regular alpha-helical or beta-sheet conformation, the 3D-structures revealed a clearer partitioning of the cationic and hydrophobic faces for the cyclic peptide.  相似文献   

8.
The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.  相似文献   

9.
A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein’s C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10.  相似文献   

10.
Anti-complement effects of lactoferrin-derived peptides   总被引:2,自引:0,他引:2  
Lactoferrin is an important biological molecule with many functions such as modulation of the inflammatory response, iron metabolism and antimicrobial defense. One effect of lactoferrin is the inhibition of the classical complement pathway. This study reports that antimicrobial peptides derived from the N-terminal region from both human and bovine lactoferrin, lactoferricin H and lactoferricin B, respectively, inhibit the classical complement pathway. No inhibitory effect of these peptides was observed on the alternative complement pathway in an AP50 assay. However, lactoferricin B reduced the inhibitory properties of serum against Escherichia coli in a concentration dependent manner. These results suggest that the N-terminal region of lactoferrin is the important part in the inhibition of complement activation and that these peptides possess other important properties than their antimicrobial effect.  相似文献   

11.
This review focuses on important structural features affecting the antimicrobial activity of 15-residue derivatives of lactoferricins. Our investigations are based on an alanine-scan of a 15-residue bovine lactoferricin derivative that revealed the absolute necessity of two tryptophan residues for antimicrobial activity. This "tryptophan-effect" was further explored in homologous derivatives of human, caprine, and porcine lactoferricins by the incorporation of one additional tryptophan residue, and by increasing the content of tryptophan in the bovine derivative to five residues. Most of the resulting peptides display a substantial increase in antimicrobial activity. To identify which molecular properties make tryptophan so effective, a series of bovine lactoferricin derivatives were prepared containing non-encoded unnatural aromatic amino acids, which represented various aspects of the physicochemical nature of tryptophan. The results clearly demonstrate that tryptophan is not unique since most of the modified peptides were of higher antimicrobial potency than the native peptide. The size and three-dimensional shape of the inserted "super-tryptophans" are the most important determinants for the high antimicrobial activity of the modified peptides. This review also describes the use of a "soft-modeling" approach in order to identify important structural parameters affecting the antimicrobial activity of modified 15-residue murine lactoferricin derivatives. This QSAR-study revealed that the net charge, charge asymmetry, and micelle affinity of the peptides were the most important structural parameters affecting their antimicrobial activity.  相似文献   

12.
Bovine lactoferricin (Lfcin B) belongs to the antimicrobial peptide family, which is the first line of defense against pathogens in many organisms. Lfcin B has important applications due to its antiviral, antifungal, antiparasitic, anticancer/tumor and antibacterial activity.In this work, we tested five triazine dyes for Lfcin B affinity interactions using surface plasmon resonance (SPR) technology. Recombinant Lfcin B was expressed as a fusion protein with GST (Lfcin B-GST) by using the baculovirus expression vector system and the dye-Sepharose matrices were assayed for Lfcin B-GST adsorption and subsequent elution.Red HE-3B and Yellow HE-4R dyes were selected and immobilized on a Sepharose-4B matrix for further purification studies. The Yellow HE-4R-Sepharose matrix was specific for Lfcin B and allowed adsorption of Lfcin B-GST directly from the culture medium even at high salt concentration.This novel application of SPR to screen possible dye–peptide interactions could be relevant to purify other peptides or proteins by using low-cost dye-affinity chromatography.  相似文献   

13.
Antimicrobial peptides allegedly exert their action on microbial membranes. Bovine lactoferrin enfold two antimicrobial domains, lactoferricin B (LFcin B) and lactoferrampin (LFampin). Effects of representative peptides thereof on the membranes of Candida albicans and Escherichia coli were investigated. Confocal laser scanning microscopy revealed that these peptides were internalized within a few minutes, concurrently with disrupting membrane integrity as indicated by freeze-fracture transmission electron microscopy. The most striking findings were induction of distinct vesicle-like structures in the membrane of C. albicans by the LFampin peptide, and detachment of the outer membrane and surface protrusions in E. coli by the LFcin B peptide.  相似文献   

14.
We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a β-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides.  相似文献   

15.
Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action.  相似文献   

16.
An 11-residue peptide (FQWQRNMRKVR) homologous to just over half the loop region of human lactoferricin is thought to be responsible for antimicrobial properties of human lactoferricin. Multiple antigen peptides (MAP) of the 11-residue peptide exerted significant antibacterial effects against a broad spectrum of bacteria including MRSA. More than eight branching was favourable for increasing its antibacterial activity. Our report shows a novel possibility for MAP to increase the activity of antibiotic peptides other than simply to stimulate antibody production, as reported so far.  相似文献   

17.
A hallmark of the systemic antimicrobial response of Drosophila is the synthesis by the fat body of several antimicrobial peptides which are released into the hemolymph in response to a septic injury. One of these peptides, drosomycin, is active primarily against fungi. Using a drosomycin-green fluorescent protein (GFP) reporter gene, we now show that in addition to the fat body, a variety of epithelial tissues that are in direct contact with the external environment, including those of the respiratory, digestive and reproductive tracts, can express the antifungal peptide, suggesting a local response to infections affecting these barrier tissues. As is the case for vertebrate epithelia, insect epithelia appear to be more than passive physical barriers and are likely to constitute an active component of innate immunity. We also show that, in contrast to the systemic antifungal response, this local immune response is independent of the Toll pathway.  相似文献   

18.
Mangoni ML  Papo N  Mignogna G  Andreu D  Shai Y  Barra D  Simmaco M 《Biochemistry》2003,42(47):14023-14035
We report on two new cyclic 17-residue peptides that we named ranacyclins E and T, the first isolated from Rana esculenta frog skin secretions and the second discovered by screening a cDNA library from Rana temporaria. Ranacyclins have a loop region that is homologous with that of an 18-mer peptide, pLR, isolated from the skin of the Northern Leopard frog, Rana pipiens, with no reported antimicrobial activity. Here we show that ranacyclins and pLR have antimicrobial and antifungal activity. However, despite the high structural similarity, they differ in their spectrum of activity. The data reveal that ranacyclins and pLR have several properties that differentiate them from most known antimicrobial peptides. These include the following: (i) they adopt a significant portion of random coil structure in the membrane as revealed by ATR-FTIR and CD spectroscopy (50% for ranacyclin T and 70% for both ranacyclin E and pLR); (ii) they bind similarly to both zwitterionic and negatively charged membranes as revealed by using tryptophan fluorescence and surface plasmon resonance (SPR; BIAcore biosensor); (iii) they insert into the hydrophobic core of the membrane and presumably form transmembrane pores without damage to the bacterial wall, as revealed by SPR, ATR-FTIR, and transmission electron microscopy (TEM); and (iv) despite being highly and equally active in permeating bacterial spheroplasts and negatively charged membranes, they differ significantly in their potencies against target cells. Furthermore, a significant fraction of a given secondary structure is not prerequisite for membrane permeation and antimicrobial activity. However, increasing the fraction of a secondary structure and reducing peptide assembly in the membrane make it easier for the peptide to diffuse through the cell wall, which is different for each microorganism, into the cytoplasmic membrane.  相似文献   

19.
Bovine lactoferricin is a 25-residue peptide that is excised through pepsin cleavage in the stomach from the intact 80 kDa bovine milk protein lactoferrin. This basic peptide contains a single disulfide crosslink and is considerably more active as an antimicrobial peptide than the intact protein. It has been suggested that the dramatic difference in potency is related to a change in the secondary and tertiary structure of this peptide, moving from a mixed alpha-helical beta-strand region in the protein to an amphipathic twisted antiparallel beta-sheet in the peptide. Here we have used equilibrium and restrained molecular dynamics calculations to compare the stability of the solution structure of the isolated peptide with that excised from the intact protein. Simulations were performed for fully solvated peptides in the absence and presence of 250 mM salt. Our results show that the peptide as released from the protein is relatively unstable, particularly in the absence of salt. However, even though the simulations extended over 60 nsecs, no interconversion could be observed between the crystal and solution structures, unless a relatively small directional force was exerted on the peptide. A pathway for the structural transition from a helical to a sheet structure was identified in this fashion.  相似文献   

20.
To identify potent new antifungal agents, the Candida cell growth inhibitory activities of six lactoferrin (Lf) peptides consisting of 6-25 amino acid residues (peptide 1, FKCRRWQWRMKKLGAPSITCVRRAF lactoferricin B; peptide 2, FKCRRWQWRM; peptide 2', FKARRWQWRM; peptide 3, GAPSITCVRRAF; peptide 4, RRWQWR; and peptide 5, RWQWRM) were examined. Of these, peptide 2 strongly suppressed the multiplication of Candida cells, but other peptides showed only weak activities. In two strains of C. albicans, the minimum inhibitory concentration 100 of peptide 2 (17.3+/-2.2 microM and 17.5+/-2.4 microM) was close to that of miconazole (13.0+/-1.7 microM and 13.1+/-1.6 microM) but markedly different from that of amphotericin B (0.52+/-0.09 microM and 0.56+/-0.11 microM). The suppression of Candida cell growth was additively increased by a combination of peptide 2 with amphotericin B and miconazole. Peptides 1, 3, 4 and 5 and Lf suppressed iron uptake by Candida cells, inversely correlated with their Candida cell growth inhibition activities. However, iron uptake was not inhibited by peptide 2. In addition, peptide 2 upregulated Candida cell killing activity of polymorphonuclear leukocytes (PMN) increasing their superoxide generation, protein kinase C activity, p38 MAPK activity and the expression of p47phox. These results indicated that the main antimicrobial activity of the Lf peptides is dependent on the N-terminal half of Lf and that the PMN upregulatory activity of peptide 2 and additive function of peptide 2 with antifungal drugs are useful for prophylaxis and control of candidiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号